About Convergence Speed of the Stationary Galerkin Method for the Mixed Type Equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 53-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is investigated the boundary value problem of V. N. Vragov for mixed-type equation of second order, when equation belongs to elliptic type close to the cylindrical base region. Using a stationary Galerkin methods we prove the unique regular solvability of this boundary value problem. It was established a priori estimates for mixed-type equation. It is obtained an estimate for the rate convergence of Galerkin method in the steady-state rate of the Sobolev spaces by eigenfunctions of the Laplace operator in the spatial variables and time. For derivation of the estimate of convergence of stationary Galerkin methods we use the expantion of solution of the initial boundary value problem.
Keywords: equation of mixed type, stationary, the Galerkin method, boundary value problem, unequality, estimate.
@article{VYURU_2012_14_a4,
     author = {I. E. Egorov and I. M. Tikhonova},
     title = {About {Convergence} {Speed} of the {Stationary} {Galerkin} {Method} for the {Mixed} {Type} {Equation}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {53--58},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a4/}
}
TY  - JOUR
AU  - I. E. Egorov
AU  - I. M. Tikhonova
TI  - About Convergence Speed of the Stationary Galerkin Method for the Mixed Type Equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 53
EP  - 58
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a4/
LA  - ru
ID  - VYURU_2012_14_a4
ER  - 
%0 Journal Article
%A I. E. Egorov
%A I. M. Tikhonova
%T About Convergence Speed of the Stationary Galerkin Method for the Mixed Type Equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 53-58
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a4/
%G ru
%F VYURU_2012_14_a4
I. E. Egorov; I. M. Tikhonova. About Convergence Speed of the Stationary Galerkin Method for the Mixed Type Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 53-58. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a4/

[1] Smirnov M. M., Equation of Mixed Type, Nauka, M., 1970

[2] Bitsadze A. V., Equation of Mixed Type, Akad. Nauk SSSR, M., 1959 | MR

[3] Mikhlin S. G., Variational Methods in Mathematical Physics, Nauka, M., 1970 | MR | Zbl

[4] Ladyzhensky O. A., Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 | MR

[5] Moiseev E. I., The Equation of Mixed Type with Spectral Parameter, Izd-vo Mosk. universiteta, M., 1988 | MR | Zbl

[6] Egorov I. E., Feodorov V. E., High-Order Nonclassical Eequations of Mathematical Physics, Vychisl. tsentr SO RAN, Novosibirsk, 1995 | MR

[7] Dgishkariani A. V., “The Rate of Convergence of the Bubnov–Galerkin Method”, Computational Mathematics and Mathematical Physics, 4:2 (1964), 343–348

[8] Vragov V. N., “To the Theory of Boundary Value Problems for Mixed-Type Equations in Space”, Diferential Equation, 13:6 (1977), 1098–1105 | MR | Zbl

[9] Lar'kin N. A., “A Class of Nonlinear Equations of Mixed Type”, Siberian Mathematical Journal, XIX:6 (1978), 1308–1314 | MR | Zbl

[10] Vinogradova P. V., Zarubin A. G., “Error Estimation of Galerkin Method for Non-Stationary Equations”, Computational Mathematics and Mathematical Physics, 49:9 (2009), 1643–1651 | MR | Zbl

[11] Egorov I. E., Tikhonova I. M., “On Stationary Galerkin Methods for the Second Order Equation of Mixed Type”, Mat. zametki YaGu, 17:2 (2010), 41–47 | Zbl