Asymptotic Stability of Solutions to One Class of Nonlinear Second-Order Differential Equations with Parameters
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 39-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of nonlinear second-order ordinary differential equations with parameters. Differential equations of such type arise when studying oscillations of an «inversed pendulum» in which the pivot point vibrates periodically. We establish conditions under which the zero solution is asymptotically stable. We obtain estimates for the attraction domain of the zero solution and establish estimates for the decay rate of solutions at infinity. Obtaining the results, we use a criterion for asymptotic stability of the zero solution to systems of linear ordinary differential equations with periodic coefficients. The criterion is formulated in terms of solvability of a special boundary value problem for the Lyapunov differential equation on the interval. The estimates of the attraction domain of the zero solution and estimates for the decay rate of the solutions at infinity are established by the use of the norm of the solution to the boundary value problem.
Keywords: second-order differential equations, periodic coefficients, asymptotic stability, Lyapunov differential equation.
@article{VYURU_2012_14_a3,
     author = {G. V. Demidenko and K. M. Dulina and I. I. Matveeva},
     title = {Asymptotic {Stability} of {Solutions} to {One} {Class} of {Nonlinear} {Second-Order} {Differential} {Equations} with {Parameters}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {39--52},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a3/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - K. M. Dulina
AU  - I. I. Matveeva
TI  - Asymptotic Stability of Solutions to One Class of Nonlinear Second-Order Differential Equations with Parameters
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 39
EP  - 52
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a3/
LA  - ru
ID  - VYURU_2012_14_a3
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A K. M. Dulina
%A I. I. Matveeva
%T Asymptotic Stability of Solutions to One Class of Nonlinear Second-Order Differential Equations with Parameters
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 39-52
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a3/
%G ru
%F VYURU_2012_14_a3
G. V. Demidenko; K. M. Dulina; I. I. Matveeva. Asymptotic Stability of Solutions to One Class of Nonlinear Second-Order Differential Equations with Parameters. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 39-52. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a3/

[1] Demidenko G. V., Matveeva I. I., “On Stability of Solutions to Linear Systems with Periodic Coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl

[2] G. V. Demidenko, I. I. Matveeva, “On asymptotic stability of solutions to nonlinear systems of differential equations with periodic coefficients”, Selcuk J. Appl. Math., 3:2 (2002), 37–48 | MR | Zbl

[3] Demidenko G. V., Matveeva I. I., “On Stability of Solutions to Quasilinear Periodic Systems of Differential Equations”, Siberian Math. J., 45:6 (2004), 1041–1052 | DOI | MR | Zbl

[4] G. V. Demidenko, I. I. Matveeva, “On numerical study of asymptotic stability of solutions to linear periodic differential equations with a parameter”, J. Comput. Math. Optim., 5:3 (2009), 163–173 | MR | Zbl

[5] Malkin I. G., Theory of Stability of Motion, Nauka, M., 1966 | MR | Zbl

[6] Daletskiy Yu. L., Kreyn M. G., Stability of Solutions of Differential Equations in Banach Space, Nauka, M., 1970 | MR

[7] Yakubovich V. A., Starzhinskiy V. M., Linear Differential Equations with Periodic Coefficients and Their Applications, Nauka, M., 1972 | MR

[8] Andreev Yu. N., Control of Finite Dimensional Linear Objects, Nauka, M., 1976 | MR

[9] Rozenvasser E. N., Lyapunov Exponents in the Theory of Linear Control Systems, Nauka, M., 1977 | MR | Zbl

[10] Bodunov N. A., Kotchenko F. F., “On the Dependence of Stability of Linear Periodic Systems on the Period”, Differential Equations, 24:2 (1988), 338–341 | MR | Zbl

[11] Bogolyubov N. N., “The Theory of Perturbations in Nonlinear Mechanics”, Proc. Inst. Struct. Mech., 14, 1950, 9–34

[12] Kapitsa P. L., “Dynamic Stability of a Pendulum with a Vibrating Point of Suspension”, Journal of Experimental and Theoretical Physics, 21:5 (1951), 588–597

[13] Bogolyubov N. N., Mitropol'skiy Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Fizmatgiz, M., 1963 | MR | Zbl

[14] Mitropol'skiy Yu. A., The Method of Averaging in Nonlinear Mechanics, Naukova Dumka, Kiev, 1971 | MR