Inverse Problem in the Control of Dynamic System
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 162-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a synthesis of motion control for manipulation robot (MR) to the destination point of the programmed trajectory by the Lyapunov's direct method. During constructing of the model of dynamics MR is presented as a unified system, whose phase vector is determined by the data of a mechanism, as well as of the actuators. This approach to the control synthesis is based on the use of first integrals of the system motion as Lyapunov functions, therefore a considered drive must have specific physical meaning, such as DC electric drive, hydraulic drive with throttle control, etc., what will enable to take drive's energy into account in the construction of Lyapunov function. For definiteness, an MR with electric drives and the anchor control was taken as an example, which does not limit the possibility to use a different type of drive. Derivation of the MR motion equations is conducted on the basis of complete non-linear MR model using tensor analysis. The stability of movements of industrial MR with the solid of revolution as operating device is studied.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
model of dynamics, control synthesis, point of programmed trajectory, Lyapunov functions.
                    
                  
                
                
                @article{VYURU_2012_14_a15,
     author = {A. A. Bragina},
     title = {Inverse {Problem} in the {Control} of {Dynamic} {System}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {162--166},
     publisher = {mathdoc},
     number = {14},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a15/}
}
                      
                      
                    TY - JOUR AU - A. A. Bragina TI - Inverse Problem in the Control of Dynamic System JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 162 EP - 166 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a15/ LA - ru ID - VYURU_2012_14_a15 ER -
%0 Journal Article %A A. A. Bragina %T Inverse Problem in the Control of Dynamic System %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 162-166 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a15/ %G ru %F VYURU_2012_14_a15
A. A. Bragina. Inverse Problem in the Control of Dynamic System. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 162-166. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a15/
