Estimation of Parameters for S-shaped Software Reliability Growth Models According to Data Collected During Previous Releases
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 156-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to the selection of parameters for modeling software reliability. This article discusses the process of selecting the parameters S-shaped growth model of software reliability based on data on failures in previous releases, compares the accuracy of the model at different ways of selection parameters. Goel-Okumoto model is used as the base model. This model is based on data about failures in the program's over a certain period of time. In order to obtain appropriate estimates using this model requires a certain amount of failure data, which are not available until the system has not been tested for a long enough period of time. As the experimental data using statistical data collected for three consecutive releases of the software industry scale. Evaluation of model parameters was performed by using the maximum likelihood function.
Keywords: software reliability, software reliability growth models, Goel-Okumoto S-shaped model.
@article{VYURU_2012_14_a14,
     author = {V. A. Gerasimov},
     title = {Estimation of {Parameters} for {S-shaped} {Software} {Reliability} {Growth} {Models} {According} to {Data} {Collected} {During} {Previous} {Releases}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {156--161},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a14/}
}
TY  - JOUR
AU  - V. A. Gerasimov
TI  - Estimation of Parameters for S-shaped Software Reliability Growth Models According to Data Collected During Previous Releases
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 156
EP  - 161
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a14/
LA  - ru
ID  - VYURU_2012_14_a14
ER  - 
%0 Journal Article
%A V. A. Gerasimov
%T Estimation of Parameters for S-shaped Software Reliability Growth Models According to Data Collected During Previous Releases
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 156-161
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a14/
%G ru
%F VYURU_2012_14_a14
V. A. Gerasimov. Estimation of Parameters for S-shaped Software Reliability Growth Models According to Data Collected During Previous Releases. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 156-161. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a14/

[1] J. D. Musa, A. Iannino, K. Okumoto, Software reliability measurement, prediction, application, McGraw-Hill Book Company, N.Y., 1987, 621 pp.

[2] M. Lyu, Handbook of software reliability engineering, McGraw-Hill Book Company, N.Y., 1996

[3] M. Xie, G. Y. Hong, C. Wohlin, “Software reliability prediction incorporating information from a similar project”, J. of Software and Systems, 49:1 (1999), 43–48 | DOI

[4] A. L. Goel, K. Okumoto, “A Time Dependent Error Detection Model for Software Reliability and Other Performance Measures”, IEEE Trans. Reliability, R-28 (1979), 206–211 | DOI

[5] Wood A., Software Reliability Growth Models, Tekhnicheskii otchet, (Yaz. ang.) http://www.hpl.hp.com/techreports/tandem/TR-96.1.pdf

[6] J. A. Morgan, G. J. Knafl, “Residual fault density prediction using regression methods”, Proc. of the 7th Int. Symp. on Software Reliabilty Engineering, IEEE Computer Press, N.Y., 1996, 87–92

[7] Wikipedia: The Free Encyclopedia, Mean Absolute Percentage Error, , Zagl. s ekrana (Yaz. ang.) http://en.wikipedia.org/wiki/Mean_absolute_percentage_error