The Linear Inequalities Set Representation of Minkovski's Sum for Two Polyhedrons
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 108-119

Voir la notice de l'article provenant de la source Math-Net.Ru

A convex polyhedron is represented as a set of the linear inequalities solutions. Minkowski's sum of two convex polyhedrons $X,Y\subset \mathbb{R}^n$ is polyhedron as well is represented as a set of the linear inequalities solutions. Polynomial algorithm of solving this problem based of forming number of extra inequalities in the summands representation and them translation to resultant representation is presented in the paper. Usage of parallel and distributed computation for effective algorithm Implementation is suggested.
Keywords: polyhedron, Minkowski's sum set, linear inequalities set, linear programming.
@article{VYURU_2012_14_a10,
     author = {A. V. Panyukov},
     title = {The {Linear} {Inequalities} {Set} {Representation} of  {Minkovski's} {Sum} for  {Two} {Polyhedrons}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {108--119},
     publisher = {mathdoc},
     number = {14},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a10/}
}
TY  - JOUR
AU  - A. V. Panyukov
TI  - The Linear Inequalities Set Representation of  Minkovski's Sum for  Two Polyhedrons
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 108
EP  - 119
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a10/
LA  - ru
ID  - VYURU_2012_14_a10
ER  - 
%0 Journal Article
%A A. V. Panyukov
%T The Linear Inequalities Set Representation of  Minkovski's Sum for  Two Polyhedrons
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 108-119
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a10/
%G ru
%F VYURU_2012_14_a10
A. V. Panyukov. The Linear Inequalities Set Representation of  Minkovski's Sum for  Two Polyhedrons. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 108-119. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a10/