Boundary Problems for a Third-Order Equations with Changing Time Direction
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 19-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary problems for nonclassical partial differential equations, coefficients in the main part of the sign change that occurs during many applications, particularly in physics, the description processes of diffusion and transfer, in geometry and population genetics, fluid dynamics, as well as many other areas. The work is devoted to research solvability of boundary value problems for nonclassical equations of the third order $ {\mathop{\rm sgn}} x \, u_{ttt} + u_ {xx} = f (x, t), \quad {\mathop{\rm sgn}} x \, u_{t}-u_{xxx} = f (x, t)$ with changing direction time. For these problems, we prove theorems the existence and uniqueness of generalized solutions. The proof makes essential use Theorem Vishik–Lax–Milgram and the method of obtaining a priori estimates.
Keywords: the boundary value problem, the equation of third order with a changing time direction, the generalized solutions.
@article{VYURU_2012_14_a1,
     author = {V. I. Antipin and S. V. Popov},
     title = {Boundary {Problems} for a {Third-Order} {Equations} with {Changing} {Time} {Direction}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {19--28},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a1/}
}
TY  - JOUR
AU  - V. I. Antipin
AU  - S. V. Popov
TI  - Boundary Problems for a Third-Order Equations with Changing Time Direction
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 19
EP  - 28
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a1/
LA  - ru
ID  - VYURU_2012_14_a1
ER  - 
%0 Journal Article
%A V. I. Antipin
%A S. V. Popov
%T Boundary Problems for a Third-Order Equations with Changing Time Direction
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 19-28
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a1/
%G ru
%F VYURU_2012_14_a1
V. I. Antipin; S. V. Popov. Boundary Problems for a Third-Order Equations with Changing Time Direction. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 19-28. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a1/

[1] Kozhanov A. I., The Theory Equations of Composite Type, Thesis of Doctor of Physical and Mathematical Sciences, Novosibirsk, 1993, 334 pp.

[2] Kislov N. V., “Boundary Value Problems for Equations of Mixed Type in a Rectangular Region”, Reports of the Academy of Sciences of the USSR, 255:1 (1980), 26–30 | MR | Zbl

[3] Pjatkov S. G., “Svojstva sobstvennyh funkcij odnoj spektral’noj zadachi i nekotorye ih prilozhenija”, Nekotorye prilozheniya funktsional'nogo analiza k zadacham matematicheskoy fiziki, AN SSSR. Sib. otd-nie. In-t matematiki, Novosibirsk, 1986, 65–84

[4] Egorov I. E., Fedorov V. E., Nonclassical Equations of Mathematical Physics of High-Order, VC SO RAN, Novosibirsk, 1995, 133 pp. | MR

[5] Egorov I. E., Pjatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000, 336 pp. | MR

[6] Egorov Ju. V., Lectures on Partial Differential Equations. Additional Chapters, MGU, M., 1985, 166 pp. | MR

[7] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple”, Rendiconti del seminario matimatico della Univ. di Padova, 31 (1961), 1–45 | MR | Zbl

[8] Dzhuraev T. D., Boundary Value Problems for Equations of Mixed and Mixed-Composite type, FAN, Tashkent, 1979, 239 pp. | MR

[9] Antipin V. I., “Solvability of Boundary Value Problems for the Third Order with Changing Time Direction”, Mathematical Notes YSU, 18:1 (2011), 8–15

[10] L. Cattabriga, “Un Problema al cjntorno per una equazione parabolica di ordine dispari”, Annali della Scuola Normale Superiore di Pisa, 13:2 (1959), 163–203 | MR | Zbl