Keywords: weakened Showalter–Sidorov problem, generalized filtration Boussinesq equation, inverse coefficient problems.
@article{VYURU_2012_14_a0,
author = {G. A. Sviridyuk and S. A. Zagrebina},
title = {Nonclassical {Mathematical} {Physics} {Models}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {7--18},
year = {2012},
number = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a0/}
}
TY - JOUR AU - G. A. Sviridyuk AU - S. A. Zagrebina TI - Nonclassical Mathematical Physics Models JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 7 EP - 18 IS - 14 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a0/ LA - ru ID - VYURU_2012_14_a0 ER -
%0 Journal Article %A G. A. Sviridyuk %A S. A. Zagrebina %T Nonclassical Mathematical Physics Models %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 7-18 %N 14 %U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a0/ %G ru %F VYURU_2012_14_a0
G. A. Sviridyuk; S. A. Zagrebina. Nonclassical Mathematical Physics Models. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 7-18. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a0/
[1] Vragov V. N., Boundary Problems for Nonclassical Equations of Mathematical Physics, Novosibirskij gos. univ., Novosibirsk, 1983 (in Russian)
[2] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl
[3] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003 | MR | Zbl
[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Ju. D., Linear and Nonlinear Sobolev Type Equation, Fizmatlit, M., 2007 (in Russian)
[5] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[6] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as Phenomena of the Sobolev-Type Equations”, News of Irkutsk State University. Ser. Mathematics, 3:1 (2010), 51–72 (in Russian) | MR
[7] Kozhanov A. I., “A Problem with Oblique Derivative for Some Pseudoparabolic Equations and Equations Close to Them”, Siberian Mathematical J., 37:6 (1996), 1171–1181 | DOI | MR | Zbl
[8] Kozhanov A. I., Lar'kin N. A., “On Solvability of Boundary-Value Problems for the Wave Equation with a Nonlinear Dissipation in Noncylindrical Domains”, Siberian Mathematical J., 42:6 (2001), 1062–1081 | DOI | MR | Zbl
[9] Kozhanov A. I., “On the Solvability of Boundary Value Problems for Quasilinear Ultraparabolic Equations in Some Mathematical Models of the Dynamics of Biological Systems”, J. of Applied and Industrial Mathematics, 4:4 (2010), 512–525 | DOI | MR | Zbl
[10] Kozhanov A. I., Boundary Value Problems for Equations of Mathematical Physics of Odd Order, Novosibirskij gos. univ., Novosibirsk, 1990 (in Russian) | MR
[11] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks”, J. Applied Mathematics and Mechanics (PMM), 24:5 (1960), 1286–1303 | DOI | MR | Zbl
[12] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72
[13] P. J. Chen, M. E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl
[14] Kozhanov A. I., “Boundary Value Problems for Some Classes of Higher-Order Equations that are Unsolved with Respect to the Highest Derivative”, Siberian Mathematical J., 35:2 (1994), 324–340 | DOI | MR | Zbl
[15] Zagrebina S. A., “The Initial-Finish Problem for the Navier–Stokes Linear System”, Bulletin of South Ural State University. Ser. «Mathematical Modelling, Programming Computer Software», 2010, no. 4 (221), issue 7, 35–39 (in Russian)
[16] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI | MR | Zbl
[17] Zamyshlyaeva A. A., “The Initial-Finish Value Problem for Nonhomogenious Boussinesque–Löve Equation”, Bulletin of South Ural State University. Ser. «Mathematical Modelling, Programming Computer Software», 2011, no. 37 (254), issue 10, 22–29 (in Russian)
[18] Polubarinova-Kochina P. Y., Theory of Ground Water Movement, Princeton University Press, Princeton, N. J., 1962 | MR | MR | Zbl
[19] Dzektser E. S., “Generalization of the Groundwater Flow from Free Surface”, Doklady Mathematics, 202:5 (1972), 1031–1033 (in Russian) | Zbl
[20] Furaev V. Z., Shadrin G. A., “Derivation of the Equation for the Free Surface of the Filtered Liquid in a Layer of Finite Depth”, Calculate Mathematics and Math. Physics, 10, M., 1982, 66–71 (in Russian)
[21] Sviridyuk G. A., “A Problem of Generalized Boussinesq Filtration Equation”, Soviet Mathematics (Izvestiya VUZ. Matematika), 33:2 (1989), 62–73 | MR | Zbl
[22] Manakova N. A., “The Optimal Control Problem for a Generalized Boussinesq Filtration”, Vestnik Magnitogorsk. gos. univ. Ser. Mathematics, 2005, no. 8, 113–122 (in Russian)
[23] Kozhanov A. I., “Initial Boundary Value Problem for Generalized Boussinesque Type Equations with Nonlinear Source”, Math. Notes, 65:1 (1999), 59–63 | DOI | DOI | MR | Zbl
[24] Kozhanov A. I., “Some Classes of Nonstationary Equations with Growing Lower Terms”, Siberian Mathematical J., 46:4 (1998), 755–764 | DOI | MR | Zbl
[25] Kozhanov A. I., “Solvability of the Inverse Problem of Finding Thermal Conductivity”, Siberian Mathematical J., 46:5 (2005), 841–856 | DOI | MR | Zbl
[26] A. I. Kozhanov, Composite Type Equation and Inverse Problem, VSP, Utrecht–Boston–Köln–Tokyo, 1999 | MR | Zbl