On the Measurement of the >
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the Leontieff type equations theory we consider the mathematical model of the measuring transducer, demonstrating the mechanical lag effect. In studying of the model with deterministic external signal the methods and results of the Sobolev type equations theory and degenerate groups of operators are very useful, because they helped to create an efficient computational algorithm. Now, the model assumes a presence of white noise along with the deterministic signal. Since the model is represented by a degenerate system of ordinary differential equations, it is difficult to apply existing nowadays approaches such as Ito–Stratonovich–Skorohod and Melnikova–Filinkov–Alshansky in which the white noise is understood as a generalized derivative of the Wiener process. Instead of it, we propose a new concept of the «white noise», which is equal to the symmetric mean derivative (in the paper — the derivative of the Nelson–Gliklikh) of the Wiener process, and in the framework of the Einstein–Smoluchowsky coincides with the «ordinary» derivative of Brownian motion. The first part of the paper contains the basic facts of the Nelson–Gliklikh derivative theory adapted to this situation. The second part deals with the weakened Showalter–Sidorov problem and gives exact formulas for its solution. As an example, we present a concrete model of a measuring transducer.
Keywords: Leontieff type equations, weakened Showalter–Sidorov problem, symmetric mean derivative, Wiener process.
@article{VYURU_2012_13_a9,
     author = {A. L. Shestakov and G. A. Sviridyuk},
     title = {On the {Measurement} of the {<<White} {Noise>>}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {99--108},
     year = {2012},
     number = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a9/}
}
TY  - JOUR
AU  - A. L. Shestakov
AU  - G. A. Sviridyuk
TI  - On the Measurement of the <>
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 99
EP  - 108
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a9/
LA  - en
ID  - VYURU_2012_13_a9
ER  - 
%0 Journal Article
%A A. L. Shestakov
%A G. A. Sviridyuk
%T On the Measurement of the <>
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 99-108
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a9/
%G en
%F VYURU_2012_13_a9
A. L. Shestakov; G. A. Sviridyuk. On the Measurement of the <>. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 99-108. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a9/

[1] Shestakov A. L., “Dynamic Accuracy of the Transmitter with a Corrective Device in the Form of Sensor Model”, Measurement Techniques, 1987, no. 2, 26–34 (in Russian) | MR

[2] Sviridyuk G. A., Brychev S. V., “Numerical Solution of Systems of Equations of Leontief Type”, Russian Mathematics, 47:8 (2003), 44–50 | MR | Zbl

[3] Shestakov A. L., “Dynamic Error Correction Transducer Linear Filter-based Sensor Model”, Izvestiya VUZ. Priborostroenie, 34:4 (1991), 8–13 (in Russian) | MR

[4] Shestakov A. L., “Modal Synthesis of the Transmitter”, J. of Computer and Systems Sciences International, 1995, no. 4, 67–75 (in Russian)

[5] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measuring Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2010, no. 16 (192), issue 5, 116–120 (in Russian) | Zbl

[6] A. L. Shestakov, G. A. Sviridyuk, “Optimal measurement of dynamically distorted signals”, Vestn. Yuzh.-Ural. gos. un-ta. Ser.: Mat. modelirovanie i programmirovanie, 2011, no. 17 (234), vyp. 8, 70–75 | Zbl

[7] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[8] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publishing; American Mathematical Society, 2000, 660 pp. | MR

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[10] Keller A. V., Nazarova E. I., “The Problem of Optimal Measurement: Numerical Solution, Algorithm for Programs”, News of Irkutsk State University. Series «Mathematics», 4:3 (2011), 74–82 | Zbl

[11] Keller A. V.(RU), Showolter–Sidorov problem (shosid problem), svidetelstvo 2010616865, pravoobladatel GOU VPO «Yuzhno-Uralskii gosudarstvennyi universitet», 210615137, Reestr programm dlya EVM, zayavl. 16.08.2010; zaregestr. 14.10.2010

[12] K. Ito, Essentials of Stochastic Processes, Translations of Mathematical Monographs, 231, American Mathematical Society, 2006 | MR | Zbl

[13] R. L. Stratonovich, Conditional Markov Processes and Their Applications to the Theory of Optimal Control, Elsevier, N.-Y., 1968 | MR | Zbl

[14] Stratonovich R. L., Conditional Markov Processes and Their Applications to the Theory of Optimal Control, Elsevier, N.-Y., 1968 | MR | MR | Zbl

[15] M. Kovács, S. Larsson, “Introduction to stochastic partial differential equations”, Proceedings of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | Zbl

[16] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations. II: Solutions In Spaces Of Abstract Stochastic Distributions”, J. of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[17] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR

[18] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.-Y., 2011 | MR | Zbl

[19] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as Phenomena of the Sobolev-type Equations”, News of Irkutsk State University. Series «Mathematics», 3:1 (2010), 51–72 | MR