The Solvability of Nonstationary Problem of Filtering Theory
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss one problem for class unclassical equations mathematical wave theory. A distinctive feature of this problem is the time dependence of the functional coefficients of an elliptic operator on the right side of the equation. The method of investigation this theory is reduction to problem Cauchy for nonstationary equation of Sobolev type. The Sobolev type equations with time-dependent operator in this formulation are considered for the first time. We introduced definition of relatively spectrally bounded operator-functions. The conditions that guarantee the fulfillment of this task properties allow to allocate the subspace of initial values for which there is only one solution to the Cauchy problem. This subspace we are named the generalized phase space solutions for the nonstationary equations of Sobolev type. The solution of this problem for a Sobolev type equations, as well as in the original formulation, is obtained by recursive formula.
Keywords: nonstationary equation
Mots-clés : Sobolev type equation.
@article{VYURU_2012_13_a8,
     author = {M. A. Sagadeyeva},
     title = {The {Solvability} of {Nonstationary} {Problem} of {Filtering} {Theory}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {86--98},
     year = {2012},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/}
}
TY  - JOUR
AU  - M. A. Sagadeyeva
TI  - The Solvability of Nonstationary Problem of Filtering Theory
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 86
EP  - 98
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/
LA  - ru
ID  - VYURU_2012_13_a8
ER  - 
%0 Journal Article
%A M. A. Sagadeyeva
%T The Solvability of Nonstationary Problem of Filtering Theory
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 86-98
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/
%G ru
%F VYURU_2012_13_a8
M. A. Sagadeyeva. The Solvability of Nonstationary Problem of Filtering Theory. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 86-98. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/

[1] Sviridyuk G. A., “A Model for the Dynamics of an Incompressible Viscoelastic Fluid”, Soviet Mathematics–Izvestiya VUZ. Matematika, 32:1 (1988), 94–100 | MR | Zbl

[2] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “About the Basic Representations of the Theory of a Filtration in Fractures Environments”, Appl. Math. and Mech., 24:5 (1960), 58–73 | MR

[3] G. V. Demidenko, S. V. Uspenskii, The Equations and the Systems which Have Been not Resolved Concerning the Senior Derivative, Science book, Novosibirsk, 1998, 438 pp. | MR | Zbl

[4] Dzektser Ye. S., “Generalization of the Equation of Movement of Ground Waters with a Free Surface”, Dokl. Akad. Nauk USSR, 202:5 (1972), 1031–1033 | Zbl

[5] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | MR | Zbl

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR | Zbl

[7] Shestakov A. L., Sviridyuk G. A., Zaharova E. V., “Dinamic Measure as a Optimal Control Problem”, Review of Industrial and Applied Mathematics, 16:4 (2009), 732–733

[8] Shestakov A. L., Sviridyuk G. A., “Are new approach to measuring dynamically distorted signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2010, no. 16(192), issue 5, 88–92

[9] Dalecki Yu. L., Krejn M. G., Stability of Decisions of the Differential Equations in Banach Space, Science, M., 1970, 536 pp. | MR

[10] T. Kato, “Integration of the Equation of Evolution in a Banach Space”, J. Math. Soc. of Japan, 5 (1953), 208–234 | DOI | MR | Zbl

[11] Ladyzhenskaja O. A., Vishik M. I., “Edge Problems for the Equations in Private Derivative and Some Classes of the Operational Equations”, Uspekhi Math. Nauk, 11:6 (1956), 41–97 | MR | Zbl

[12] Yosida K., Functional analysis, Springer, Berlin, 1980, 511 pp. | MR | MR | Zbl

[13] Krejn S. G., Linear Differential Equations in Banach Spaces, Science, M., 1967, 464 pp. | MR

[14] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1993, 376 pp. | MR | Zbl

[15] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl