Mots-clés : Sobolev type equation.
@article{VYURU_2012_13_a8,
author = {M. A. Sagadeyeva},
title = {The {Solvability} of {Nonstationary} {Problem} of {Filtering} {Theory}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {86--98},
year = {2012},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/}
}
TY - JOUR AU - M. A. Sagadeyeva TI - The Solvability of Nonstationary Problem of Filtering Theory JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 86 EP - 98 IS - 13 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/ LA - ru ID - VYURU_2012_13_a8 ER -
%0 Journal Article %A M. A. Sagadeyeva %T The Solvability of Nonstationary Problem of Filtering Theory %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 86-98 %N 13 %U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/ %G ru %F VYURU_2012_13_a8
M. A. Sagadeyeva. The Solvability of Nonstationary Problem of Filtering Theory. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 86-98. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a8/
[1] Sviridyuk G. A., “A Model for the Dynamics of an Incompressible Viscoelastic Fluid”, Soviet Mathematics–Izvestiya VUZ. Matematika, 32:1 (1988), 94–100 | MR | Zbl
[2] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “About the Basic Representations of the Theory of a Filtration in Fractures Environments”, Appl. Math. and Mech., 24:5 (1960), 58–73 | MR
[3] G. V. Demidenko, S. V. Uspenskii, The Equations and the Systems which Have Been not Resolved Concerning the Senior Derivative, Science book, Novosibirsk, 1998, 438 pp. | MR | Zbl
[4] Dzektser Ye. S., “Generalization of the Equation of Movement of Ground Waters with a Free Surface”, Dokl. Akad. Nauk USSR, 202:5 (1972), 1031–1033 | Zbl
[5] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | MR | Zbl
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR | Zbl
[7] Shestakov A. L., Sviridyuk G. A., Zaharova E. V., “Dinamic Measure as a Optimal Control Problem”, Review of Industrial and Applied Mathematics, 16:4 (2009), 732–733
[8] Shestakov A. L., Sviridyuk G. A., “Are new approach to measuring dynamically distorted signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2010, no. 16(192), issue 5, 88–92
[9] Dalecki Yu. L., Krejn M. G., Stability of Decisions of the Differential Equations in Banach Space, Science, M., 1970, 536 pp. | MR
[10] T. Kato, “Integration of the Equation of Evolution in a Banach Space”, J. Math. Soc. of Japan, 5 (1953), 208–234 | DOI | MR | Zbl
[11] Ladyzhenskaja O. A., Vishik M. I., “Edge Problems for the Equations in Private Derivative and Some Classes of the Operational Equations”, Uspekhi Math. Nauk, 11:6 (1956), 41–97 | MR | Zbl
[12] Yosida K., Functional analysis, Springer, Berlin, 1980, 511 pp. | MR | MR | Zbl
[13] Krejn S. G., Linear Differential Equations in Banach Spaces, Science, M., 1967, 464 pp. | MR
[14] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1993, 376 pp. | MR | Zbl
[15] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl