The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 45-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In work are received simple formulas of the calculation eigenvalues and analytical formulas of finding «weighed» corrections of the perturbation theory of the discrete semi bounded from below operators. Estimations remainder of the sum of the Reley-Shredinger's functional series are received also. On the base of received formulas was created non-iteration numerical method, which allowed to find the eigenvalues and meanings of eigenfunctions perturbed spectral problem. The numerical experiment for finding of the eigenfeatures by the Laplas's operator, which was perturbed by operator of the multiplying on twice continuously differentiated function, was organized. From the experiment seen, that results numerical accounts of eigenvalues and meanings of eigenfunctions well-agree with result, which received by well-known methods: finding eigenvalues were compared with method Leverrie, and meanings of eigenfunctions — with methods by Danilevskiy A. M. and Krylov A. N.
Keywords: eigenvalues, eigenfunctions, «weighted» corrections of the perturbation theory, perturbed operators.
@article{VYURU_2012_13_a4,
     author = {S. I. Kadchenko and S. N. Kakushkin},
     title = {The {Numerical} {Methods} of {Eigenvalues} and {Eigenfunctions} of {Perturbed} {Self-Adjoin} {Operator} {Finding}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {45--57},
     year = {2012},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a4/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - S. N. Kakushkin
TI  - The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 45
EP  - 57
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a4/
LA  - ru
ID  - VYURU_2012_13_a4
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A S. N. Kakushkin
%T The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 45-57
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a4/
%G ru
%F VYURU_2012_13_a4
S. I. Kadchenko; S. N. Kakushkin. The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 45-57. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a4/

[1] Sadovnichiy V. A., Podolskiy V. E., “Tracks of the Operators”, Successes of Mathematical Sciences, 61:5 (371) (2006), 89–156 | DOI | MR | Zbl

[2] Gokhberg I. C., Kreyn M. G., Introduction to the Theory of the Linear Non-Selfadjoin Operator in a Hilbert Space, Science, M., 1965 | MR

[3] Lidskiy V. B., “The Self-adjoin Operators Having a Track”, Reports of Academy of Sciences of the USSR, 125:3 (1959), 485–487 | MR

[4] Sadovnichiy V. A., Podolskiy V. E., “About an Evaluation of the First Eigenvalues of the Operator of Sturm-Liuvill”, RAN(Russia), 346:2 (1996), 162–164 | MR

[5] Shestakov A. L., “Dynamic Accuracy of the Measuring Converter with Correcting Device in the Manner of Sensor's Models”, Metrology, 1987, no. 2, 26–34 | MR

[6] Shestakov A. L., “Correction of Dynamic Inaccuracy of the Measuring Converter by the Linear Filter on the Base of Sensor's Models”, The Notify of High School, Instrumentmaking, 34:4 (1991), 8–13 | MR

[7] Shestakov A. L., “Modal Syntheses of the Measuring Converter”, Notify of DAN. Theory and Managerial System, 1995, no. 4, 67–75

[8] Shestakov A. L., Sviridyuk G. A., “New Approach to Measurement of the Dynamically Distorted Signal”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2010, no. 16 (192), issue 5, 116–120 | Zbl

[9] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of Optimal Measurement”, Automatics and Telemechanics, 2012, no. 1, 107–115 | Zbl

[10] Sviridyuk G. A., Bayazitova A. A., “About Direct and Inverse Problems for the Equations of Hoff on the Graph”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2009, no. 1(18), 6–17 | DOI

[11] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Stability of the Hoff's Equations on the Column”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2010, no. 1(15), 6–15 | DOI

[12] Sadovnichiy V. A., Dubrovskiy V. V., Kadchenko S. I., Kravchenko V. F., “Calculating of the First Eigenvalues of the Hydrodynamic Stability Problem of Flow of Viscous Fluid Between Two Rotating Cylinders”, Differential Equations, 36:6 (2000), 742–746 | MR

[13] Kadchenko S. I., “Computing the sums of Rayleigh–Schrodinger series of perturbed self-adjoint operators”, Computational Mathematics and Mathematical Physics, 47:9 (2007), 1435–1445 | DOI | MR

[14] Kadchenko S. I., Kinzina I. I., “Computation of Eigenvalues of Perturbed Discrete Semibounded Operators”, Computational Mathematics and Mathematical Physics, 46:7 (2006), 1200–1206 | DOI | MR

[15] Sadovnichiy V. A., Dubrovskiy V. V., Kadchenko S. I., Kravchenko V. F., “First Eigenvalues of Boundary Problem of Hydrodynamic Stability of Flow of Puazejl in a Round Pipe Calculating”, Differential Equations, 34:1 (1998), 50–53 | MR

[16] Sadovnichiy V. A., The Theory of Operator, The Textbook for High Schools with Profound Learning of Mathematics, Drofa, M., 2004, 384 pp.

[17] Sadovnichiy V. A., Dubrovskiy V. V., “Remark on a New Method of Calculation of Eigenvalues and Eigenfunctions for Discrete Operators”, J. of Mathematical Sciences, 75:3 (1995), 244–248 | MR

[18] Dubrovskiy V. V., Sedov A. I., “An Estimate for the Difference of Spectral Functions of Legendre-type Operators”, J. of Mathematical Sciences, 6:4 (2000), 1075–1082 | MR | Zbl

[19] Kadchenko S. I., “New Method of Calculation of Eigenvalues of the Spectral Orr–Sommerfeld's Problem”, Electromagnetic Waves and Electronic Systems, 5:6 (2000), 4–10 | MR

[20] Kadchenko S. I., Ryazanova L. S., “The Numerical Method of Finding Eigenvalues of the Discrete Semi Bounded From Below Operator”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2011, no. 17 (234), issue 8, 46–51 | Zbl

[21] Naymark M. A., The Linear Differential Operator, Nauka, M., 1969, 528 pp. | MR