Optimization of a Polyharmonic Impulse
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 35-44

Voir la notice de l'article provenant de la source Math-Net.Ru

In theory and practice of building some technical devices, it is necessary to optimize trigonometric polynomials. In this article, we provide optimization of a trigonometric polynomial (polyharmonic impulse) $f(t):=\sum\limits_{k=1}^n\,f_k\cos(kt)$ with the asymmetry coefficient $k := \frac{f_{max}}{|f_{min}|}$, $f_{max} \ \ := \max\limits_t\,f(t,\lambda)$, $f_{min} := \min\limits_t\,f(t,\lambda)$. We have calculated optimal values of main amplitudes. The basis of the analysis represented in the article is the idea of the “minimal Maxwell stratum” by which we understand the subset of polynomials of a fixed degree with maximal possible number of minima under condition that all these minima are located at the same level. Polynomial $f(t)$ is then called maxwellian. The starting point of the present study was an experimentally obtained optimal set of coefficients $f_k$ for arbitrary $n$. Later, we proved uniqueness of the optimal polynomial with maximal number of minima on interval $[0,\pi]$ and derived general formula of a maxwellian polynomial of degree $n$, which was related to Fejer kernel with the asymmetry coefficient $n$. Thus, a natural hypothesis arose that Fejer kernel should define the optimal polynomial. The present paper provides justification of this hypothesis.
Mots-clés : polyharmonic impulse, orthogonal polynomials.
Keywords: trigonometric polynom, asymmetry coefficient, optimization, Maxwell stratum
@article{VYURU_2012_13_a3,
     author = {V. N. Ermolenko and V. A. Kostin and D. V. Kostin and Yu. I. Sapronov},
     title = {Optimization of a  {Polyharmonic}  {Impulse}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {35--44},
     publisher = {mathdoc},
     number = {13},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/}
}
TY  - JOUR
AU  - V. N. Ermolenko
AU  - V. A. Kostin
AU  - D. V. Kostin
AU  - Yu. I. Sapronov
TI  - Optimization of a  Polyharmonic  Impulse
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 35
EP  - 44
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/
LA  - ru
ID  - VYURU_2012_13_a3
ER  - 
%0 Journal Article
%A V. N. Ermolenko
%A V. A. Kostin
%A D. V. Kostin
%A Yu. I. Sapronov
%T Optimization of a  Polyharmonic  Impulse
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 35-44
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/
%G ru
%F VYURU_2012_13_a3
V. N. Ermolenko; V. A. Kostin; D. V. Kostin; Yu. I. Sapronov. Optimization of a  Polyharmonic  Impulse. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 35-44. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/