Optimization of a Polyharmonic Impulse
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In theory and practice of building some technical devices, it is necessary to optimize trigonometric polynomials. In this article, we provide optimization of a trigonometric polynomial (polyharmonic impulse) $f(t):=\sum\limits_{k=1}^n\,f_k\cos(kt)$ with the asymmetry coefficient $k := \frac{f_{max}}{|f_{min}|}$, $f_{max} \ \ := \max\limits_t\,f(t,\lambda)$, $f_{min} := \min\limits_t\,f(t,\lambda)$. We have calculated optimal values of main amplitudes. The basis of the analysis represented in the article is the idea of the “minimal Maxwell stratum” by which we understand the subset of polynomials of a fixed degree with maximal possible number of minima under condition that all these minima are located at the same level. Polynomial $f(t)$ is then called maxwellian. The starting point of the present study was an experimentally obtained optimal set of coefficients $f_k$ for arbitrary $n$. Later, we proved uniqueness of the optimal polynomial with maximal number of minima on interval $[0,\pi]$ and derived general formula of a maxwellian polynomial of degree $n$, which was related to Fejer kernel with the asymmetry coefficient $n$. Thus, a natural hypothesis arose that Fejer kernel should define the optimal polynomial. The present paper provides justification of this hypothesis.
Mots-clés : polyharmonic impulse, orthogonal polynomials.
Keywords: trigonometric polynom, asymmetry coefficient, optimization, Maxwell stratum
@article{VYURU_2012_13_a3,
     author = {V. N. Ermolenko and V. A. Kostin and D. V. Kostin and Yu. I. Sapronov},
     title = {Optimization of a {Polyharmonic} {Impulse}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {35--44},
     year = {2012},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/}
}
TY  - JOUR
AU  - V. N. Ermolenko
AU  - V. A. Kostin
AU  - D. V. Kostin
AU  - Yu. I. Sapronov
TI  - Optimization of a Polyharmonic Impulse
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 35
EP  - 44
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/
LA  - ru
ID  - VYURU_2012_13_a3
ER  - 
%0 Journal Article
%A V. N. Ermolenko
%A V. A. Kostin
%A D. V. Kostin
%A Yu. I. Sapronov
%T Optimization of a Polyharmonic Impulse
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 35-44
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/
%G ru
%F VYURU_2012_13_a3
V. N. Ermolenko; V. A. Kostin; D. V. Kostin; Yu. I. Sapronov. Optimization of a Polyharmonic Impulse. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 35-44. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/

[1] Darinskii B. M., Sapronov Yu.I., Tsarev S. L., “Bifurcations of Extremals of Fredholm Functionals”, J. of Mathematical Sciences, 145:6 (2007), 5311–5453 | DOI | MR

[2] Ermolenko V. N., “Innovative Solutions for Pile Deep Foundation”, Stroyprofil', 2010, no. 6 (84), 20–22

[3] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2011, no. 17(234), issue 8, 70–75 | Zbl

[4] Maslov V. P., Perturbation Theory and Asymptotic Methods, Publishing House of Moscow State University, M., 1965, 553 pp.

[5] Bröcker Th., Lander L., Differentiable Germs and Catastrophes, London Mathematical Society Lecture Notes Series, 17, Cambridge University Press, 1975, 178 pp. | MR | Zbl

[6] Gilmore R., Catastrophe Theory for Scientists and Engineers, Dover, N. Y., 1993 | MR | Zbl

[7] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Singularities of Differentiable Maps, v. 1, The Classification of Critical Points Caustics, Wave Fronts, Birkhäuser, Boston, 1985, 396 pp. | MR | Zbl

[8] Poston T., Stewart I., Catastrophe: Theory and Its Applications, Dover, N. Y., 1998 | MR | MR | Zbl

[9] Szego G., Orthogonal Polynomials, American Mathematical Society, 1939, 432 pp. | MR