Keywords: trigonometric polynom, asymmetry coefficient, optimization, Maxwell stratum
@article{VYURU_2012_13_a3,
author = {V. N. Ermolenko and V. A. Kostin and D. V. Kostin and Yu. I. Sapronov},
title = {Optimization of a {Polyharmonic} {Impulse}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {35--44},
year = {2012},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/}
}
TY - JOUR AU - V. N. Ermolenko AU - V. A. Kostin AU - D. V. Kostin AU - Yu. I. Sapronov TI - Optimization of a Polyharmonic Impulse JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 35 EP - 44 IS - 13 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/ LA - ru ID - VYURU_2012_13_a3 ER -
%0 Journal Article %A V. N. Ermolenko %A V. A. Kostin %A D. V. Kostin %A Yu. I. Sapronov %T Optimization of a Polyharmonic Impulse %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 35-44 %N 13 %U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/ %G ru %F VYURU_2012_13_a3
V. N. Ermolenko; V. A. Kostin; D. V. Kostin; Yu. I. Sapronov. Optimization of a Polyharmonic Impulse. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 35-44. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a3/
[1] Darinskii B. M., Sapronov Yu.I., Tsarev S. L., “Bifurcations of Extremals of Fredholm Functionals”, J. of Mathematical Sciences, 145:6 (2007), 5311–5453 | DOI | MR
[2] Ermolenko V. N., “Innovative Solutions for Pile Deep Foundation”, Stroyprofil', 2010, no. 6 (84), 20–22
[3] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2011, no. 17(234), issue 8, 70–75 | Zbl
[4] Maslov V. P., Perturbation Theory and Asymptotic Methods, Publishing House of Moscow State University, M., 1965, 553 pp.
[5] Bröcker Th., Lander L., Differentiable Germs and Catastrophes, London Mathematical Society Lecture Notes Series, 17, Cambridge University Press, 1975, 178 pp. | MR | Zbl
[6] Gilmore R., Catastrophe Theory for Scientists and Engineers, Dover, N. Y., 1993 | MR | Zbl
[7] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Singularities of Differentiable Maps, v. 1, The Classification of Critical Points Caustics, Wave Fronts, Birkhäuser, Boston, 1985, 396 pp. | MR | Zbl
[8] Poston T., Stewart I., Catastrophe: Theory and Its Applications, Dover, N. Y., 1998 | MR | MR | Zbl
[9] Szego G., Orthogonal Polynomials, American Mathematical Society, 1939, 432 pp. | MR