Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 24-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We understand the Leontieff type equation with white noise as the expression of the form $L\dot\xi(t)=M\xi(t)+\dot w(t)$ where $L$ is a degenerate matrix $n\times n$, $M$ is a non-degenerate matrix $n\times n$, $\xi(t)$ is a stochastic process we are looking for and $\dot w(t)$ is the white noise. Since the derivative $\dot\xi(t)$ and the white noise are well-posed only in terms of distributions, the direct investigation of such equations is very complicated. We involve two methods in the investigation. First, we pass to the stochastic differential equation $L\xi(t)=M\int_0^t\xi(s)ds+w(t)$, where $w(t)$ is Wiener process, and then for describing solutions of this equations we apply the so called Nelson mean derivatives that are introduced without using the distributions. By these methods we obtain formulae for solutions of Leotieff type equations with white noise.
Keywords: mean derivative, current velocity, white nose, Wiener process, Leontieff type equation.
@article{VYURU_2012_13_a2,
     author = {Yu. E. Gliklikh},
     title = {Investigation of {Leontieff} {Type} {Equations} with {White} {Noise} by the {Methods} of {Mean} {Derivatives} of {Stochastic} {Processes}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {24--34},
     year = {2012},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a2/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 24
EP  - 34
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a2/
LA  - ru
ID  - VYURU_2012_13_a2
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 24-34
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a2/
%G ru
%F VYURU_2012_13_a2
Yu. E. Gliklikh. Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 24-34. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a2/

[1] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measuring Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2010, no. 16 (192), issue 5, 116–120 (in Russian) | Zbl

[2] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2011, no. 17(234), issue 8, 70–75 | Zbl

[3] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1966), 1079–1085 | DOI

[4] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967, 142 pp. | MR

[5] E. Nelson, Quantum fluctuations, Princeton University Press, Princeton, 1985, 147 pp. | MR | Zbl

[6] Gliklikh Yu. E., Global and Stochastic Analysis in Problems Mathematical Physics, KomKniga, M., 2005, 416 pp. (in Russian)

[7] Yu. E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Springer, London, 2011, 460 pp. | MR | Zbl

[8] Partasarati K., An Introduction to Probability Theory and Measure Theory, Mir, M., 1988, 343 pp. (in Russian) | MR

[9] Gantmakher F. R., The Theory of Matrices, Fizmatlit, M., 1967, 575 pp. (in Russian)