Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 128-132
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper an optimal control over solutions of a one no classical mathematical physics problem for linear Hoff equations defined on a finite oriented connected graph has been investigated. This one we reduced to the initial-finish value problem for an abstract Sobolev type equation by special selected functional spaces. Existence and uniqueness for strong solution of the initial-finish value problem for a linear Sobolev type equation was established. It is shown that in this case exist a unique optimal control over solutions of considered problem. The obtained abstract results are applied to the one linear Hoff model defined on graph and existence and uniqueness for solution of this problem was established. This work contains a numerical experiment based on obtained theoretical results. For constructing of the approximate solution we used Galerkin's method. Also in this paper we used ideas and methods developed by G. A. Sviridyuk and his pupils.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Sobolev type equations
Keywords: the initial-finish value problem, optimal control, the linear Hoff equation.
                    
                  
                
                
                Keywords: the initial-finish value problem, optimal control, the linear Hoff equation.
@article{VYURU_2012_13_a12,
     author = {A. G. Dylkov},
     title = {Numerical {Solution} of an {Optimal} {Control} {Problem} for {One} {Linear} {Hoff} {Model} {Defined} on {Graph}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--132},
     publisher = {mathdoc},
     number = {13},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/}
}
                      
                      
                    TY - JOUR AU - A. G. Dylkov TI - Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 128 EP - 132 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/ LA - ru ID - VYURU_2012_13_a12 ER -
%0 Journal Article %A A. G. Dylkov %T Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 128-132 %N 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/ %G ru %F VYURU_2012_13_a12
A. G. Dylkov. Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 128-132. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/
