Keywords: the initial-finish value problem, optimal control, the linear Hoff equation.
@article{VYURU_2012_13_a12,
author = {A. G. Dylkov},
title = {Numerical {Solution} of an {Optimal} {Control} {Problem} for {One} {Linear} {Hoff} {Model} {Defined} on {Graph}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {128--132},
year = {2012},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/}
}
TY - JOUR AU - A. G. Dylkov TI - Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 128 EP - 132 IS - 13 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/ LA - ru ID - VYURU_2012_13_a12 ER -
%0 Journal Article %A A. G. Dylkov %T Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 128-132 %N 13 %U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/ %G ru %F VYURU_2012_13_a12
A. G. Dylkov. Numerical Solution of an Optimal Control Problem for One Linear Hoff Model Defined on Graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 128-132. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a12/
[1] Zagrebina S. A., “The Multipoint Initial-finish Problem for Hoff Linear Model”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2012, no. 5 (264), issue 11, 4–12 (in Russian) | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[3] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of South Ural State University. Seria «Mathematical Modelling, Programming Computer Software», 2011, no. 17(234), issue 8, 70–75 (in Russian) | Zbl
[4] Manakova N. A., Dylkov A. G., “On One Optimal Control Problem with a Penalty Functional in General Form”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), 18–24 (in Russian) | DOI