The Method of the Integral Equations to Construct the Green's Function
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 16-23
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear differential operator and the system of the boundary conditions were considered. The boundary conditions are linear and linear independent functionals. The Green's function for the defined by this operator and functionals boundary problem was build as solution of the Fredholm's integral equation of the second kind. Characteristics of the Fredholm's equation was defined by the Green's function of the auxiliary problem. Resulting Green's function makes it possible to solve both direct (the problem of finding solutions) and inverse (the problem of finding the right part of the equation from the experimentally obtained solution) problems. The numerical algorithm to solve boundary problem and inverse problem was build on the basis of the proposed method and tested.
Keywords: linear boundary problem, Green's function, integral equations.
@article{VYURU_2012_13_a1,
     author = {Yu. S. Asfandiyarova and V. I. Zalyapin and Ye. V. Kharitonova},
     title = {The {Method} of the {Integral} {Equations} to {Construct} the {Green's} {Function}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {16--23},
     year = {2012},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_13_a1/}
}
TY  - JOUR
AU  - Yu. S. Asfandiyarova
AU  - V. I. Zalyapin
AU  - Ye. V. Kharitonova
TI  - The Method of the Integral Equations to Construct the Green's Function
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 16
EP  - 23
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_13_a1/
LA  - ru
ID  - VYURU_2012_13_a1
ER  - 
%0 Journal Article
%A Yu. S. Asfandiyarova
%A V. I. Zalyapin
%A Ye. V. Kharitonova
%T The Method of the Integral Equations to Construct the Green's Function
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 16-23
%N 13
%U http://geodesic.mathdoc.fr/item/VYURU_2012_13_a1/
%G ru
%F VYURU_2012_13_a1
Yu. S. Asfandiyarova; V. I. Zalyapin; Ye. V. Kharitonova. The Method of the Integral Equations to Construct the Green's Function. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 13 (2012), pp. 16-23. http://geodesic.mathdoc.fr/item/VYURU_2012_13_a1/

[1] A. L. Shestakov, “Dynamic Error Correction Method”, IEEE Transactions on Instrumentation and Measurement, 45:1 (1996), 250–255 | DOI

[2] Sansone D., Ordinary Differential Equations, v. 1, IL, M., 1953 (in Russian)

[3] Ilyin V. A., Moiseev Ye. I., “Differential and Difference Form for the Nonlocal Boundary Problem of the Sturm–Liouville's Operator”, DAN USSR, 291:3 (1986), 534–539 (in Russian) | MR

[4] Tikhomirov V. M., Some Problems of the Approximation Theory, MSU, M., 1976, 305 pp. (in Russian) | MR

[5] Zalyapin V. I., Kharitonova H. V., Yermakov S. V., “Inverse problem of the measurements theory”, Inverse problems, Design and Optimization Symposium (Miami, Florida, USA, 2007), 91–96

[6] Asfandiyarova Yu. S., Zalyapin V. I., “The Green's Function of the Linear Boundary Problem with Non-local Data”, Proceedings of the Lobachevskii's Mathematical Center, 39, Kazan Mathematical Society, 2009, 128 (in Russian)

[7] Neimark M. A., Linear Differential Operators, Nauka, M., 1969, 528 pp. (in Russian) | MR