@article{VYURU_2012_12_a4,
author = {D. N. Sidorov},
title = {Solution to the {Volterra} {Integral} {Equations} of the {First} {Kind} with {Discontinuous} {Kernels}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {44--52},
year = {2012},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_12_a4/}
}
TY - JOUR AU - D. N. Sidorov TI - Solution to the Volterra Integral Equations of the First Kind with Discontinuous Kernels JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 44 EP - 52 IS - 12 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_12_a4/ LA - ru ID - VYURU_2012_12_a4 ER -
%0 Journal Article %A D. N. Sidorov %T Solution to the Volterra Integral Equations of the First Kind with Discontinuous Kernels %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 44-52 %N 12 %U http://geodesic.mathdoc.fr/item/VYURU_2012_12_a4/ %G ru %F VYURU_2012_12_a4
D. N. Sidorov. Solution to the Volterra Integral Equations of the First Kind with Discontinuous Kernels. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 44-52. http://geodesic.mathdoc.fr/item/VYURU_2012_12_a4/
[1] N. A. Sidorov, B. V. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht, 2002, 548 pp. | MR | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR | Zbl
[3] Aparcin A. S., Nonclassic Volterra Integral Equations of the First Kind: Theory and Numerical Methods, Nauka, Novosibirsk, 1999, 193 pp.
[4] Markova E. V., Sidler I. V., Trufanov V. V., “On Modeling of Evolving Glushkov Systems and Applications in Power Industry”, Avtomatika i telemehanika, 2011, no. 7, 20–28 | MR
[5] A. M. Denisov, A. Lorenzi, “On a special Volterra integral equation of the first kind”, Boll. Un. Mat. Ital. B, 7:9 (1995), 443–457 | MR
[6] Jacenko Ju. P., Integral Models of the Systems with Memory Under Control, Naukova dumka, Kiev, 1991, 218 pp. | MR | Zbl
[7] G. C. Evans, “Volterra's Integral Equation of the Second Kind with Discontinuous Kernel”, Transactions of the American Mathematical Society, 11:4 (1910), 393–413 | MR | Zbl
[8] Kromov A. P., “Integral Operators with Kernels that are Discontinuous on Broken Lines”, Sbornik: Mathematics, 197:11 (2006), 1669–1696 | DOI | DOI | MR | Zbl
[9] Magnickij N. A., “Asymptotic Solution of the Volterra Integral Equation of the First Kind”, DAN SSSR, 269:1 (1983), 29–32 | MR | Zbl
[10] Sidorov N. A., Sidorov D. N., “Existence and Construction of Generalized Solutions of Nonlinear Volterra Integral Equations of the First Kind”, Differential Equations, 42:9 (2006), 1312–1316 | DOI | MR | Zbl
[11] Sidorov N. A., Trufanov A. V., “Nonlinear Operator Equations with a Functional Perturbation of the Argument of Neutral Type”, Differential Equations, 45:12 (2009), 1840–1844 | DOI | MR | Zbl
[12] Sidorov N. A., Trufanov A. V., Sidorov D. N., “Existence and Structure of Solution of Integral-functional Volterra Equation of the First Kind”, Izv. IGU, ser. Matematika, 1 (2007), 267–274 | Zbl
[13] N. A. Sidorov, M. V. Falaleev, D. N. Sidorov, “Generalized solutions of Volterra integral equations of the first kind”, Bull. Malays. Math. Soc., 29:2 (2006), 1–5 | MR
[14] Sidorov N. A., Falaleev M. V., Sidorov D. N., “Generalized Solutions of Volterra Integral Equations of the First Kind”, Bull. Malays. Math. Soc., 29:2 (2006), 1–5
[15] Sidorov N. A., Sidorov D. N., Krasnik A. V., “Solution of Volterra Operator-integral Equations in the Nonregular Case by the Successive Approximation Method”, Differential Equations, 46:6 (2010), 882–891
[16] Trenogin V. A., Functional Analysis, Fizmatlit, M., 2007, 488 pp.
[17] Gel'fond A. O., Finite Differences Calculus, Fizmatlit, M., 1959, 400 pp. | MR
[18] Sidorov D. N., Sidorov N. A., “Monotone Majorants Method in the Theory of Nonlinear Volterra Equations”, Izv. IGU, ser. Matematika, 4:1 (2011), 97–108 | MR