The Phase Space of the Modified Boussinesq Equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 13-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We proved a unique solvability of the Cauchy problem for a class of semilinear Sobolev type equations of the second order. We used ideas and techniques developed by G. A. Sviridyuk for the investigation of the Cauchy problem for a class of semilinear Sobolev type equations of the first order and by A.A. Zamyshlyaeva for the investigation of the high-order linear Sobolev type equations. We also used theory of differential Banach manifolds which was finally formed in S. Leng's works. The initial-boundary value problem for the modified Bussinesq equation was considered as application. In article we considered two cases. The first one is when an operator $L$ at the highest time derivative is continuously invertible. In this case for any point from a tangent fibration of an original Banach space there exists a unique solution lying in this space as trajectory. Particular attention was paid to the second case, when the operator $L$ isn't continuously invertible and the Bussinesq equation is degenerate one. A local phase space in this case was constructed. The conditions for the phase space of the equation being a simple Banach manifolds are given.
Keywords: phase space, relatively spectrally bounded operator, Banach manifold.
Mots-clés : Sobolev type equation
@article{VYURU_2012_12_a1,
     author = {A. A. Zamyshlyaeva and E. V. Bychkov},
     title = {The {Phase} {Space} of the {Modified} {Boussinesq} {Equation}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {13--19},
     year = {2012},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - E. V. Bychkov
TI  - The Phase Space of the Modified Boussinesq Equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 13
EP  - 19
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/
LA  - ru
ID  - VYURU_2012_12_a1
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A E. V. Bychkov
%T The Phase Space of the Modified Boussinesq Equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 13-19
%N 12
%U http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/
%G ru
%F VYURU_2012_12_a1
A. A. Zamyshlyaeva; E. V. Bychkov. The Phase Space of the Modified Boussinesq Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 13-19. http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/

[1] S. Wang, G. Chen, “Small amplitude solutions of the generalized IMBq equation”, Mathematical Analysis and Application, 274 (2002), 846–866 | DOI | MR | Zbl

[2] Arkhipov D. G., Khabakhpashev G. A., “The New Equation to Describe the Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media”, JTEP Letters, 93:8 (2011), 423–426 | DOI

[3] Sviridyuk G. A., Sukacheva T. G., “The Phase Space of a Class of Operator Equations of Sobolev Type”, Differential Equation, 26:2 (1990), 250–258 | MR | Zbl

[4] Zagrebina S. A., “On the Showalter–Sidorov Problem”, Russian Mathematics, 51:3 (2007), 19–24 | DOI | MR | Zbl

[5] Keller A.V., “Numerical Solution of the Starting Control System of Equations of Leontiev Type”, Review of Industrial and Applied Mathematics, 16:2 (2009), 345–346

[6] Manakova N. A., “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl

[7] G. A. Sviridyuk, V. E. Fedorov, Linear sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[8] Leng S., Introduction to Differentiable Manifolds, Springer-Verlag, New-York, 2002 | MR

[9] Nirenberg L., Topics in Nonlinear Functional Analysis, New ed., New-York, 2001 | MR

[10] Hassard B. D., Theory and Applications of Hopf Bifurcation, Cambridge University Press, 1981 | MR | MR | Zbl

[11] Sviridyuk G. A., Kazak V. O., “The Phase Space of one Generalized Model by Oskolkov”, Siberian Mathematical journal, 44:5 (2003), 877–882 | DOI | MR | Zbl