Mots-clés : Sobolev type equation
@article{VYURU_2012_12_a1,
author = {A. A. Zamyshlyaeva and E. V. Bychkov},
title = {The {Phase} {Space} of the {Modified} {Boussinesq} {Equation}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {13--19},
year = {2012},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - E. V. Bychkov TI - The Phase Space of the Modified Boussinesq Equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 13 EP - 19 IS - 12 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/ LA - ru ID - VYURU_2012_12_a1 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A E. V. Bychkov %T The Phase Space of the Modified Boussinesq Equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 13-19 %N 12 %U http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/ %G ru %F VYURU_2012_12_a1
A. A. Zamyshlyaeva; E. V. Bychkov. The Phase Space of the Modified Boussinesq Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 13-19. http://geodesic.mathdoc.fr/item/VYURU_2012_12_a1/
[1] S. Wang, G. Chen, “Small amplitude solutions of the generalized IMBq equation”, Mathematical Analysis and Application, 274 (2002), 846–866 | DOI | MR | Zbl
[2] Arkhipov D. G., Khabakhpashev G. A., “The New Equation to Describe the Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media”, JTEP Letters, 93:8 (2011), 423–426 | DOI
[3] Sviridyuk G. A., Sukacheva T. G., “The Phase Space of a Class of Operator Equations of Sobolev Type”, Differential Equation, 26:2 (1990), 250–258 | MR | Zbl
[4] Zagrebina S. A., “On the Showalter–Sidorov Problem”, Russian Mathematics, 51:3 (2007), 19–24 | DOI | MR | Zbl
[5] Keller A.V., “Numerical Solution of the Starting Control System of Equations of Leontiev Type”, Review of Industrial and Applied Mathematics, 16:2 (2009), 345–346
[6] Manakova N. A., “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl
[7] G. A. Sviridyuk, V. E. Fedorov, Linear sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[8] Leng S., Introduction to Differentiable Manifolds, Springer-Verlag, New-York, 2002 | MR
[9] Nirenberg L., Topics in Nonlinear Functional Analysis, New ed., New-York, 2001 | MR
[10] Hassard B. D., Theory and Applications of Hopf Bifurcation, Cambridge University Press, 1981 | MR | MR | Zbl
[11] Sviridyuk G. A., Kazak V. O., “The Phase Space of one Generalized Model by Oskolkov”, Siberian Mathematical journal, 44:5 (2003), 877–882 | DOI | MR | Zbl