Research Stability of Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of strong separating has an important role in the pattern recognition theory. The problem of strong separating means separating two convex non-intersected polyhedrons by the layer of maximum thickness. In this article, the non-stationary problems of strong separating are considered. Non-stationary problem is a problem for which the input data have been changed during the calculation process. An algorithm solving the non-stationary problem of strong separating must have two properties: auto-correcting and stability. Auto-correcting means the algorithm can continue its work effectively after the input data have been changed. Stability implies a small input data change implies a small deviation of the result. The auto-correcting is the feature of iterative algorithm based on Fejer processes. In the paper, the parallel algorithm based on Fejer mappings is described. This algorithm admits an effective implementation for the massively parallel multiprocessor systems. The notion of stable Fejer mapping is introduced. The theorem about stable Fejer mapping is proved.
Keywords: Fejer mapping, problem of strong separating, iterative method, stable Fejer mapping.
Mots-clés : pseudoprojection of point
@article{VYURU_2012_12_a0,
     author = {A. V. Ershova and I. M. Sokolinskaya},
     title = {Research {Stability} of {Parallel} {Algorithm} for {Solving} {Strong} {Separability} {Problem} {Based} on {Fejer} {Mappings}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--12},
     year = {2012},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_12_a0/}
}
TY  - JOUR
AU  - A. V. Ershova
AU  - I. M. Sokolinskaya
TI  - Research Stability of Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 5
EP  - 12
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_12_a0/
LA  - ru
ID  - VYURU_2012_12_a0
ER  - 
%0 Journal Article
%A A. V. Ershova
%A I. M. Sokolinskaya
%T Research Stability of Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 5-12
%N 12
%U http://geodesic.mathdoc.fr/item/VYURU_2012_12_a0/
%G ru
%F VYURU_2012_12_a0
A. V. Ershova; I. M. Sokolinskaya. Research Stability of Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 12 (2012), pp. 5-12. http://geodesic.mathdoc.fr/item/VYURU_2012_12_a0/

[1] Eremin I. I., “Fejer Methods for the Strong Separability of Convex Polyhedral Sets”, Russian Mathematics, 2006, no. 12, 33–43 | MR

[2] B. Boser, I. Guyon, V. Vapnik, “A training algorithm for optimal margin classifiers”, Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, ACM Press, Pittsburgh, 1992, 144–152

[3] Eremin I. I., Nonstationary Processes of Mathematical Programming, Nauka, M., 1979, 288 pp. | MR

[4] Ershova A. V., Sokolinskaya I. M., “Parallel Algorithm for Solving Strong Separability Problem Based on Fejer Mappings”, Numerical Methods and Programming, 12:2 (2011), 53–56

[5] Eremin I. I., Theory of linear optimization, «Ekaterinburg», Ekaterinburg, 1999, 312 pp.

[6] Ershova A. V., “The Algorithm of Separation of Two Convex not Intersect Polyhedral Using Fejer Mappings”, Controlling System and Information Technology, 2009, no. 1(35), 53–56

[7] Chernikov S. N., Linear inequalities, Nauka, M., 1968, 488 pp. | MR | Zbl