Keywords: an incompressible viscoelastic fluid, Oskolkov models, extended phase space.
@article{VYURU_2012_11_a7,
author = {T. G. Sukacheva},
title = {The {Generalized} {Linearized} {Model} of {Incompressible} {Viscoelastic} {Fluid} of {Nonzero} {Order}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {75--87},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a7/}
}
TY - JOUR AU - T. G. Sukacheva TI - The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 75 EP - 87 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a7/ LA - ru ID - VYURU_2012_11_a7 ER -
%0 Journal Article %A T. G. Sukacheva %T The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 75-87 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a7/ %G ru %F VYURU_2012_11_a7
T. G. Sukacheva. The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 75-87. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a7/
[1] Oskolkov A. P., “Initial-boundary Value Problems for Equations of Motion Kelvin–Voight and Oldroyd Fluids”, Trudy Mat. In-ta AN SSSR, 179, 1988, 126–164 | MR
[2] Oskolkov A. P., “Nonlocal Problems for One Class of Nonlinear Operator Equations That Arise in the Theory of Sobolev Type Equations”, J. of Mathematical Sciences, 64:1 (1993), 724–735 | Zbl
[3] Karazeeva N. A., Kotsiolis A. A., Oskolkov A. P., On Attractors and Dynamical Systems Generated by the Initial-boundary Value Problems for Equations of Motion Linear Viscoelastic Fluids, Sankt-Peterburg, 1988, 58 pp.
[4] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russ. Math. Surv., 49:4 (1994), 45–74 | MR | Zbl
[5] Oskolkov A. P., “Some Quasilinear Systems Occurring in the Study of the Motion of Viscous Fluids”, J. of Mathematical Sciences, 9:5 (1978), 765–790 | Zbl
[6] Oskolkov A. P., “Theory of Voight Fluids”, J. of Mathematical Sciences, 21:5 (1983), 818–821 | MR | Zbl
[7] Sviridyuk G. A., “Solubility of the Thermal Convection of Viscoelastic Incompressible Fluid”, Russian Mathematics, 1990, no. 12, 65–70 | MR
[8] Sviridyuk G. A., “Phase Spaces of Semilinear Sobolev Type Equations with Relatively Strong Sectorial Operator”, St. Petersburg Mathematical J., 6:5 (1994), 216–237
[9] Sukacheva T. G., The Study of Mathematical Models of Incompressible Viscoelastic Fluids, dis. ... Dr. Science, Velikiy Novgorod, 2004, 249 pp.
[10] Sukacheva T. G., “Unsteady Linearized Model of the Motion of an Incompressible Viscoelastic Fluid”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2009, no. 20 (158), issue 11, 77–83
[11] Sukacheva T. G., “Unsteady Linearized Model of the Motion of an Incompressible Viscoelastic Fluid of the High Order”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2009, no. 17 (150), issue 3, 86–93
[12] G. A. Sviridyuk, V. E. Fedorov, Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 179 pp. | MR | Zbl
[13] Sukacheva T. G., “The Problem of Thermal Convection for a Linearized Model of the Motion of an Incompressible Viscoelastic Fluid”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2010, no. 16 (192), issue 5, 83–93
[14] Sukacheva T. G., “The Problem of Thermal Convection for the Linearized Model of the Motion of an Incompressible Viscoelastic Fluid”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 37 (254), issue 10, 40–53
[15] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Izvestiya: Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl
[16] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[17] Sviridyuk G. A., Sukacheva T. G., “Cauchy Problem for a Class of Semilinear Equations of Sobolev Type”, Siberian Mathematical J., 31:5 (1990), 794–802 | DOI | MR | Zbl
[18] Sviridyuk G. A., “The Phase Space of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 | MR | Zbl
[19] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Non-linear Fredholm Maps and Leray-Schauder Theory”, Russian Mathematical Surveys, 32:4 (1977), 1–55 | DOI | MR | MR
[20] Marsden Dzh., Mak-Kraken M., Hopf Bifurcation and Its Applications, Mir, M., 1980, 368 pp. | MR
[21] Bokareva T. A., Investigation of Phase Space of Sobolev Type Equations with Relatively Sectorial Operators, Dis. ... cand. Science, Sankt-Peterburg, 1993, 107 pp.
[22] Sviridyuk G. A., “A Model of Weakly Viscoelastic Fluid”, Russian Mathematics, 1994, no. 1, 62–70 | MR
[23] Sukacheva T. G., “On the Solvability of a Nonstationary Problem of the Dynamics of Incompressible Viscoelastic Kelvin–Voight Fluid of Nonzero Order”, Russian Mathematics, 1998, no. 3 (430), 47–54
[24] Sviridyuk G. A., “Semilinear Sobolev Type Equation with Relatively Bounded Operator”, DAN SSSR, 18:4 (1991), 828–831
[25] Sviridyuk G. A., “Semilinear Sobolev Type Equations with Relatively Sectorial Operators”, Dokl. RAN, 329:3 (1993), 274–277
[26] Sviridyuk G. A., Fedorov V. E., “On the Identities of Analytic Semigroups of Operators with Kernels”, Siberian Mathematical J., 39:3 (1998), 522–533 | MR | Zbl
[27] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer Verlag, Berlin–Heidelberg–N.Y., 1981, 840 pp. | DOI | MR | MR | Zbl