Mots-clés : distributions
@article{VYURU_2012_11_a6,
author = {N. A. Sidorov and M. V. Falaleev},
title = {Continuous and generalized solutions of singular integro-differential equations in {Banach} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {62--74},
year = {2012},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a6/}
}
TY - JOUR AU - N. A. Sidorov AU - M. V. Falaleev TI - Continuous and generalized solutions of singular integro-differential equations in Banach spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 62 EP - 74 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a6/ LA - en ID - VYURU_2012_11_a6 ER -
%0 Journal Article %A N. A. Sidorov %A M. V. Falaleev %T Continuous and generalized solutions of singular integro-differential equations in Banach spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 62-74 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a6/ %G en %F VYURU_2012_11_a6
N. A. Sidorov; M. V. Falaleev. Continuous and generalized solutions of singular integro-differential equations in Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 62-74. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a6/
[1] R. Cassol, R. Schowalter, Singular and Degenerate Cauchy Problems, Academ. Press, N.Y.–San Francisco–London, 1976 | MR
[2] Falaleev M. V., “Fundamental Operator-functions of the Singular Differential Operators in the the Banach Spaces”, Sib. Math. J., 41:5 (2000), 1167–1182 | MR | Zbl
[3] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Inc., N.Y., 1985 | MR | Zbl
[4] Grazhdantseva E. Yu., “The Fundamental Operator Function of an Incomplete Singular Differential-difference Operator in Banach Spaces”, J. of Optimization, Control and Intelligence, 7 (2003)
[5] Kato T., The Theory of Perturbations of Linear Operators, Mir Publ., M., 1972 | Zbl
[6] Korpusov M. O., Pletnev Y. D., Sveshnikov A. G., “On Quasi-steddy Process in the Conducting Medium Without Dispersion”, Comput. Math. Math. Phys., 40:8 (2000), 1237–1249 | MR | Zbl
[7] Krein S. G., Chernyshov N. I., Singularly Disturbed Differential Equations in Banach Spaces, Preprint, Institute of Mathematics, Siberian Branch, USSR, Acad. Sci., 1979
[8] I. Petrovsky, “Über das Cauchysche problem für system von partiellen Differentialgleichungen”, Math. Sb., 2:5 (1937), 815–870
[9] L. Schwartz, Theorie des distributions, v. I, Paris, 1950; v. II, 1951
[10] Sidorov N. A., “The Branching of the Solutions of Differential Equations with a Degeneracy”, Differential Equations, 1973, no. 9, 1464–1481 | MR | Zbl
[11] Sidorov N. A., General Regularization Questions in Problems of Branching Theory, Irkutsk Gos. Univ., Irkutsk, 1982 | MR
[12] Sidorov N. A., “The Initial-value Problem for Differential Equations with the Fredholm Operator in the Main Part”, Vestnik of Chelyabinsk State University, Ser. 3. Mathematics. Mechanics, 1999, no. 2, 103–112 | MR
[13] Sidorov N. A., Blagodatskaya E. B., “Differential Equations with the Fredholm Operator in the Leading Differential Expression”, Soviet Math. Dokl., 44:1 (1992), 302 – 305 | MR
[14] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[15] G. Sviridyuk, V. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl
[16] Trenogin V. A., “Branching of Solutions of Nonlinear Equations in Banach Spaces”, Uspekhy Mathemat. Sciences, 13:4 (1958), 197–203 | MR
[17] M. M. Vainberg, V. A. Trenogin, The Theory of Branching of Solutions of Nonlinear Equations, Wolters-Noordhoff, Groningen, 1974
[18] Vladimirov V. S., Generalized Functions in Mathematical Physics, Nauka, M., 1979 | MR
[19] Whitham G. B., Linear and Non-Linear Wales, Mir, M., 1977 | MR
[20] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl