On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 54-61
Voir la notice de l'article provenant de la source Math-Net.Ru
$ \varepsilon $-controllability of linear first order differential equations not resolved with respect to the time derivative $L \dot{x} (t) = Mx (t) + Bu (t), \quad 0$ are studied. It is assumed that $\ker L \ne \{0 \}$ and the operator $M$ is strongly $(L, p)$-sectorial. These conditions guarantee the existence of an analytic semigroup in the sector of the resolution of the homogeneous equation $ L \dot{x} (t) = Mx (t) $. Using the theory of degenerate semigroups of operators with kernels the original equation is reduced to a system of two equations: regular, i.e. solved for the derivative (on the image of the semigroup of the homogeneous equation) and the singular (on the kernel of the semigroup) with a nilpotent operator at the derivative. Using the results of $\varepsilon$-controllability of the regular and singular equations, necessary and sufficient conditions of $\varepsilon $-controllability of the original equation of Sobolev type with respect to $p$-sectorial operator in terms of the operators are obtained. Abstract results are applied to the study of $\varepsilon$-controllability of a particular boundary-value problem, which is the linearization at zero phase–field equations describing the theory in the framework of mesoscopic phase transition.
Keywords:
relatively $p$-sectorial operators, controllability.
@article{VYURU_2012_11_a5,
author = {O. A. Ruzakova and E. A. Oleynik},
title = {On the {Controllability} of {Linear} {Sobolev} {Type} {Equations} with {Relatively} {Sectorial} {Operator}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {54--61},
publisher = {mathdoc},
number = {11},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/}
}
TY - JOUR AU - O. A. Ruzakova AU - E. A. Oleynik TI - On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 54 EP - 61 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/ LA - ru ID - VYURU_2012_11_a5 ER -
%0 Journal Article %A O. A. Ruzakova %A E. A. Oleynik %T On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 54-61 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/ %G ru %F VYURU_2012_11_a5
O. A. Ruzakova; E. A. Oleynik. On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 54-61. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/