@article{VYURU_2012_11_a5,
author = {O. A. Ruzakova and E. A. Oleynik},
title = {On the {Controllability} of {Linear} {Sobolev} {Type} {Equations} with {Relatively} {Sectorial} {Operator}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {54--61},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/}
}
TY - JOUR AU - O. A. Ruzakova AU - E. A. Oleynik TI - On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 54 EP - 61 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/ LA - ru ID - VYURU_2012_11_a5 ER -
%0 Journal Article %A O. A. Ruzakova %A E. A. Oleynik %T On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 54-61 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/ %G ru %F VYURU_2012_11_a5
O. A. Ruzakova; E. A. Oleynik. On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 54-61. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/
[1] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[3] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Deriative, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 2003 | MR | Zbl
[4] Sholohovich F. A., “On the Controllability of Linear Dynamical Systems”, Izvestie UrGU, 1998, no. 10, issue 1, 103–126
[5] Fedorov V. E., Ruzakova O. A., “One-dimensional Controllability of Sobolev Linear Equations in Hilbert Spaces”, Differential Equations, 38:8 (2002), 1216–1218 | DOI | MR | Zbl
[6] Fedorov V. E., Ruzakova O. A., “Controllability in Dimensions of One and Two of Sobolev-type Equations in Banach Spaces”, Mathematical Notes, 74:4 (2003), 583–592 | DOI | DOI | MR | Zbl
[7] Fedorov V. E., Ruzakova O. A., “Controllability of Linear Sobolev Type Equations with Relatively $p$-radial Operators”, Russian Mathematics, 2002, no. 7, 52–55 | MR | MR | Zbl
[8] Sviridyuk G. A., Efremov A. A., “Optimal Control of Sobolev Type Linear Equations with Relativity $p$-sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl
[9] Fedorov V. E., “Holomorphic Solution Semigroups for Sobolev Type Equations in Locally Convex Spaces”, Sbornik Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI | MR | Zbl
[10] Plotnikov P. I., Klepacheva A. V., “Phase-field Equations and Gradient Flows of Marginal Functions”, Siberian Mathematical Journal, 42:3 (2001), 551–567 | DOI | MR | Zbl
[11] Plotnikov P. I., Starovoytov V. N., “Stefan Problem with Surface Tension as the Limit of the Phase-field Model”, Differential Equations, 29:3 (1993), 395–404 | MR | Zbl
[12] Fedorov V. E., Sagadeeva M. A., “Bounded Solutions of the Linearized System of Phase Field”, Neklassicheskie uravneniya matematicheskoy fiziki, Tr. seminara, posvyashch. 60-letiyu prof. V. N. Vragova, Ros. Akad. nauk, Sib. otd-nie, in-t matematiki im. S. L. Soboleva, Novosibirsk, 2005, 275–284