On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$ \varepsilon $-controllability of linear first order differential equations not resolved with respect to the time derivative $L \dot{x} (t) = Mx (t) + Bu (t), \quad 0 are studied. It is assumed that $\ker L \ne \{0 \}$ and the operator $M$ is strongly $(L, p)$-sectorial. These conditions guarantee the existence of an analytic semigroup in the sector of the resolution of the homogeneous equation $ L \dot{x} (t) = Mx (t) $. Using the theory of degenerate semigroups of operators with kernels the original equation is reduced to a system of two equations: regular, i.e. solved for the derivative (on the image of the semigroup of the homogeneous equation) and the singular (on the kernel of the semigroup) with a nilpotent operator at the derivative. Using the results of $\varepsilon$-controllability of the regular and singular equations, necessary and sufficient conditions of $\varepsilon $-controllability of the original equation of Sobolev type with respect to $p$-sectorial operator in terms of the operators are obtained. Abstract results are applied to the study of $\varepsilon$-controllability of a particular boundary-value problem, which is the linearization at zero phase–field equations describing the theory in the framework of mesoscopic phase transition.
Keywords: relatively $p$-sectorial operators, controllability.
@article{VYURU_2012_11_a5,
     author = {O. A. Ruzakova and E. A. Oleynik},
     title = {On the {Controllability} of {Linear} {Sobolev} {Type} {Equations} with {Relatively} {Sectorial} {Operator}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {54--61},
     year = {2012},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/}
}
TY  - JOUR
AU  - O. A. Ruzakova
AU  - E. A. Oleynik
TI  - On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 54
EP  - 61
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/
LA  - ru
ID  - VYURU_2012_11_a5
ER  - 
%0 Journal Article
%A O. A. Ruzakova
%A E. A. Oleynik
%T On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 54-61
%N 11
%U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/
%G ru
%F VYURU_2012_11_a5
O. A. Ruzakova; E. A. Oleynik. On the Controllability of Linear Sobolev Type Equations with Relatively Sectorial Operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 54-61. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a5/

[1] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[3] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Deriative, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 2003 | MR | Zbl

[4] Sholohovich F. A., “On the Controllability of Linear Dynamical Systems”, Izvestie UrGU, 1998, no. 10, issue 1, 103–126

[5] Fedorov V. E., Ruzakova O. A., “One-dimensional Controllability of Sobolev Linear Equations in Hilbert Spaces”, Differential Equations, 38:8 (2002), 1216–1218 | DOI | MR | Zbl

[6] Fedorov V. E., Ruzakova O. A., “Controllability in Dimensions of One and Two of Sobolev-type Equations in Banach Spaces”, Mathematical Notes, 74:4 (2003), 583–592 | DOI | DOI | MR | Zbl

[7] Fedorov V. E., Ruzakova O. A., “Controllability of Linear Sobolev Type Equations with Relatively $p$-radial Operators”, Russian Mathematics, 2002, no. 7, 52–55 | MR | MR | Zbl

[8] Sviridyuk G. A., Efremov A. A., “Optimal Control of Sobolev Type Linear Equations with Relativity $p$-sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl

[9] Fedorov V. E., “Holomorphic Solution Semigroups for Sobolev Type Equations in Locally Convex Spaces”, Sbornik Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI | MR | Zbl

[10] Plotnikov P. I., Klepacheva A. V., “Phase-field Equations and Gradient Flows of Marginal Functions”, Siberian Mathematical Journal, 42:3 (2001), 551–567 | DOI | MR | Zbl

[11] Plotnikov P. I., Starovoytov V. N., “Stefan Problem with Surface Tension as the Limit of the Phase-field Model”, Differential Equations, 29:3 (1993), 395–404 | MR | Zbl

[12] Fedorov V. E., Sagadeeva M. A., “Bounded Solutions of the Linearized System of Phase Field”, Neklassicheskie uravneniya matematicheskoy fiziki, Tr. seminara, posvyashch. 60-letiyu prof. V. N. Vragova, Ros. Akad. nauk, Sib. otd-nie, in-t matematiki im. S. L. Soboleva, Novosibirsk, 2005, 275–284