Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 33-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Considering degenerate equations of Sobolev type with principal part an elliptic parabolic operator, we study solvability of linear inverse problems with final and integral overdetermination and prove existence of regular solutions.
Keywords:
linear inverse problems, final overdetermination, integral overdetermination, degenerate equations of Sobolev type, regular solutions
Mots-clés : existence.
Mots-clés : existence.
@article{VYURU_2012_11_a3,
author = {A. I. Kozhanov},
title = {Linear {Inverse} {Problems} for a {Class} of {Degenerate} {Equations} of {Sobolev} {Type}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {33--42},
publisher = {mathdoc},
number = {11},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/}
}
TY - JOUR AU - A. I. Kozhanov TI - Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 33 EP - 42 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/ LA - ru ID - VYURU_2012_11_a3 ER -
%0 Journal Article %A A. I. Kozhanov %T Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 33-42 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/ %G ru %F VYURU_2012_11_a3
A. I. Kozhanov. Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 33-42. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/