Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 33-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considering degenerate equations of Sobolev type with principal part an elliptic parabolic operator, we study solvability of linear inverse problems with final and integral overdetermination and prove existence of regular solutions.
Keywords: linear inverse problems, final overdetermination, integral overdetermination, degenerate equations of Sobolev type, regular solutions
Mots-clés : existence.
@article{VYURU_2012_11_a3,
     author = {A. I. Kozhanov},
     title = {Linear {Inverse} {Problems} for a {Class} of {Degenerate} {Equations} of {Sobolev} {Type}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {33--42},
     year = {2012},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 33
EP  - 42
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/
LA  - ru
ID  - VYURU_2012_11_a3
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 33-42
%N 11
%U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/
%G ru
%F VYURU_2012_11_a3
A. I. Kozhanov. Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 33-42. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a3/

[1] Sobolev S. L., “On a Boundary Value Problem of Mathematical Physics”, Izv. AN SSSR. Ser. Matem., 18:2 (1954), 3–50 | MR | Zbl

[2] Demidenko G. V., Uspenskiĭ S.V., Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003 | MR | Zbl

[3] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[4] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-operator Equations, Nauka, Novosibirsk, 2000 | MR

[5] S. G. Pyatkov, Operator Theory. Nonclassical Problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl

[7] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotic for dissipative nonlinear equations, Springer, 2006 | MR

[8] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, M., 2007

[9] Korpusov M. O., Blow-up of Nonclassical Non-local Equations, Librokom, M., 2011

[10] Kozhanov A. I., “Nonlinear Loaded Equations and Inverse Problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 694–716 | MR | Zbl

[11] Kozhanov A. I., “The Solvability of Inverse Problems of Reconstruction Coefficients in the Equations of Composite Type”, Vestn. NGU. Seriya Matematika, mekhanika, informatika, 8:2 (2008), 81–99 | MR

[12] Kozhanov A. I., “On the Solvability of the Inverse Problem of Finding the Leading Coefficient of Equation of Composite Type”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2008, no. 15 (115), issue 1, 27–36 | MR

[13] Kozhanov A. I., “On the Solvability of the Inverse Problem for Some Sobolev-type Equations”, Nauch. vedomosti Belgorod. gos. un-ta. Matematika. Fizika, 2010, no. 5, issue 18, 88–98

[14] Ablabekov B. S., “Inverse Problems for Equations Benjamin–Bona–Mahoki”, Informatsionnye tekhnologii i obratnye zadachi ratsional'nogo prirodoispol'zovaniya, Yugorskiy NII informatsionnykh tekhnologiy, Khanty-Mansiysk, 2005, 6–9

[15] V. E. Fedorov, A. V. Urazaeva, “An inverse problem for linear Sobolev type equations”, J. Inverse Ill-Posed Probl., 12:4 (2004), 387–395 | DOI | MR | Zbl

[16] Fedorov V. G., Ivanova N. D., “A Nonlinear Inverse Problem for the Oskolkov System”, Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach, shkola-konferentsiya, tez. dokl. (Novosibirsk, 2011), 72

[17] Nazushev A. M., The Equations of Mathematical Biology, Vyssh. shk., M., 1995

[18] Dzhenaliev M. T., To the Theory of Linear Boundary Value Problems for Loaded Differential Equations, Izd. In-ta Teor. i priklad. matematiki, Almaty, 1995

[19] Dzhenaliev M. T., Ramazanov M. I., Loaded Equation as Perturbations of Differential Equations, FYLYM, Almaty, 2010

[20] Trenogin V. A., Functional Analysis, Nauka, M., 1980 | MR | Zbl

[21] Yakubov S. Ya., Linear Differential-operator Equations and Their Applications, Elm, Baku, 1985

[22] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973 | MR