@article{VYURU_2012_11_a2,
author = {S. I. Kadchenko and S. N. Kakushkin},
title = {Meanings of the {First} {Eigenfunctions} of {Perturbed} {Discrete} {Operator} with {Simple} {Spectrum} {Finding}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {25--32},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a2/}
}
TY - JOUR AU - S. I. Kadchenko AU - S. N. Kakushkin TI - Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 25 EP - 32 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a2/ LA - ru ID - VYURU_2012_11_a2 ER -
%0 Journal Article %A S. I. Kadchenko %A S. N. Kakushkin %T Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 25-32 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a2/ %G ru %F VYURU_2012_11_a2
S. I. Kadchenko; S. N. Kakushkin. Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 25-32. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a2/
[1] Sviridyuk G. A., Bayazitova A. A., “About Direct and Inverse Problems for the Equations of Hoff on the Graph”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2009, no. 1(18), 6–17 | DOI
[2] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Stability of the Hoff's Equations on the Column”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2010, no. 1(15), 6–15 | DOI
[3] Sviridyuk G. A., Sukacheva T. G., “Fast-slow Dynamics of the Viscoelastic Media”, The Report of Academy of Sciences of USSR, 308:4 (1989), 791–794
[4] Sadovnichiy V. A., The Theory of Operator, the Textbook for High Schools with Profound Learning of Mathematics, Drofa, M., 2004, 384 pp.
[5] Sadovnichiy V. A., Dubrovskiy V. V., “Remark on a New Method of Calculation of Eigenvalues and Eigenfunctions for Discrete Operators”, Journal of Mathematical Sciences, 75:3 (1995), 244–248 | MR | Zbl
[6] Dubrovskiy V. V., Sedov A. I., “An Estimate for the Difference of Spectral Functions of Legendre-type Operators”, Fundamental and an Applied Mathematics, 6:4 (2000), 1075–1082 | MR | Zbl
[7] Dubrovskii V. V., Sedov A. I., “An Estimate for the Difference of Spectral Functions of Gegenbauer-type Operators in the Norm of $L_q$”, Izv. Vyssh. uchebn. zaved. mat., 1999, no. 8, 20–25
[8] Dubrovskiy V. V., Sedov A. I., “An Estimate for the Difference of Spectral Functions of the Selfadjoint Operator”, Electromagnetic Waves and Electronic Systems, 5:5 (2000), 10–13
[9] Kadchenko S. I., “New Method of Calculation of Eigenvalues of the Spectral Orr-Sommerfeld's Problem”, Electromagnetic Waves and Electronic Systems, 5:6 (2000), 4–10 | MR
[10] Naimark M. A., The Linear Differential Operator, Nauka, M., 1969, 528 pp. | MR | Zbl
[11] Kadchenko S. I., Ryazanova L. S., “The Numerical Method of Finding Eigenvalues of the Discrete Semi Bounded From Below Operator”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 17 (234), issue 8, 46–51