The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 13-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Of concern is the optimal control problem for the Sobolev type equation of second order with relatively polynomially bounded operator pencil. The theorem of existence and uniqueness of strong solutions of initial-finish problem for abstract equation is proved. The sufficient and, in the case when infinity is a removable singularity of the $A$-resolvent operator pencil, the necessary conditions for optimal control existence and uniqueness of such solutions are found. The initial-finish problem for the Boussinesque–Löve equation, which describes the longitudinal vibrations of an elastic rod, is investigated. We use the ideas and methods developed by G. A. Sviridyuk and his disciples. The proof of the existence and uniqueness of optimal control theorem is based on the theory of optimal control developed by J.-L. Lions.
Mots-clés : Sobolev-type equations
Keywords: relatively polynomially bounded operator pencil, strong solutions, optimal control.
@article{VYURU_2012_11_a1,
     author = {A. A. Zamyshlyaeva and O. Tsyplenkova},
     title = {The {Optimal} {Control} over {Solutions} of the {Initial-finish} {Value} {Problem} for the {Boussinesque{\textendash}L\"ove} {Equation}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {13--24},
     year = {2012},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - O. Tsyplenkova
TI  - The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 13
EP  - 24
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/
LA  - ru
ID  - VYURU_2012_11_a1
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A O. Tsyplenkova
%T The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 13-24
%N 11
%U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/
%G ru
%F VYURU_2012_11_a1
A. A. Zamyshlyaeva; O. Tsyplenkova. The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 13-24. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/

[1] Zagrebina S. A., “The Initial-Finish Problem for the Navier–Stokes Linear System”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (221), issue 7, 35–39 | Zbl

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[3] Keller A. V., “Numerical Solution of the Start Control for a System of Equations of Leontief Type”, Obozrenie prikladnoy i promyshlennoy matematiki, 16:2 (2009), 345–346

[4] Manakova N. A., “The Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | MR | Zbl

[5] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-type Equations”, J. News of Irkutsk State University. Series «Mathematics», 3:1 (2010), 51–72 | Zbl

[6] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | MR | Zbl

[7] Zamyshlyaeva A. A., “The Initial-Finish Value Problem for the Boussinesque–Löve Equation”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 37 (254), issue 10, 22–29

[8] Lions Zh.-L., Optimal Control of Systems Described by Equations with Partial Derivatives, Mir, M., 1972 | MR

[9] Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Sobolev Type Equations of the Second Order”, Vychislitel'nye tekhnologii, 8:4 (2003), 45–54 | Zbl