The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque--L\"ove Equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 13-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Of concern is the optimal control problem for the Sobolev type equation of second order with relatively polynomially bounded operator pencil. The theorem of existence and uniqueness of strong solutions of initial-finish problem for abstract equation is proved. The sufficient and, in the case when infinity is a removable singularity of the $A$-resolvent operator pencil, the necessary conditions for optimal control existence and uniqueness of such solutions are found. The initial-finish problem for the Boussinesque–Löve equation, which describes the longitudinal vibrations of an elastic rod, is investigated. We use the ideas and methods developed by G. A. Sviridyuk and his disciples. The proof of the existence and uniqueness of optimal control theorem is based on the theory of optimal control developed by J.-L. Lions.
Mots-clés : Sobolev-type equations
Keywords: relatively polynomially bounded operator pencil, strong solutions, optimal control.
@article{VYURU_2012_11_a1,
     author = {A. A. Zamyshlyaeva and O. Tsyplenkova},
     title = {The {Optimal} {Control} over {Solutions} of the {Initial-finish} {Value} {Problem} for the {Boussinesque--L\"ove} {Equation}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {13--24},
     publisher = {mathdoc},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - O. Tsyplenkova
TI  - The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque--L\"ove Equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 13
EP  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/
LA  - ru
ID  - VYURU_2012_11_a1
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A O. Tsyplenkova
%T The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque--L\"ove Equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 13-24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/
%G ru
%F VYURU_2012_11_a1
A. A. Zamyshlyaeva; O. Tsyplenkova. The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque--L\"ove Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 13-24. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/