Keywords: relatively polynomially bounded operator pencil, strong solutions, optimal control.
@article{VYURU_2012_11_a1,
author = {A. A. Zamyshlyaeva and O. Tsyplenkova},
title = {The {Optimal} {Control} over {Solutions} of the {Initial-finish} {Value} {Problem} for the {Boussinesque{\textendash}L\"ove} {Equation}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {13--24},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - O. Tsyplenkova TI - The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 13 EP - 24 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/ LA - ru ID - VYURU_2012_11_a1 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A O. Tsyplenkova %T The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 13-24 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/ %G ru %F VYURU_2012_11_a1
A. A. Zamyshlyaeva; O. Tsyplenkova. The Optimal Control over Solutions of the Initial-finish Value Problem for the Boussinesque–Löve Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 13-24. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a1/
[1] Zagrebina S. A., “The Initial-Finish Problem for the Navier–Stokes Linear System”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (221), issue 7, 35–39 | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[3] Keller A. V., “Numerical Solution of the Start Control for a System of Equations of Leontief Type”, Obozrenie prikladnoy i promyshlennoy matematiki, 16:2 (2009), 345–346
[4] Manakova N. A., “The Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | MR | Zbl
[5] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-type Equations”, J. News of Irkutsk State University. Series «Mathematics», 3:1 (2010), 51–72 | Zbl
[6] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | MR | Zbl
[7] Zamyshlyaeva A. A., “The Initial-Finish Value Problem for the Boussinesque–Löve Equation”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 37 (254), issue 10, 22–29
[8] Lions Zh.-L., Optimal Control of Systems Described by Equations with Partial Derivatives, Mir, M., 1972 | MR
[9] Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Sobolev Type Equations of the Second Order”, Vychislitel'nye tekhnologii, 8:4 (2003), 45–54 | Zbl