Keywords: multipoint initial-finish problem, relatively $p$-bounded operators, Hoff linear model.
@article{VYURU_2012_11_a0,
author = {S. A. Zagrebina},
title = {The {Multipoint} {Initial-finish} {Problem} for {Hoff} {Linear} {Model}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {4--12},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/}
}
TY - JOUR AU - S. A. Zagrebina TI - The Multipoint Initial-finish Problem for Hoff Linear Model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2012 SP - 4 EP - 12 IS - 11 UR - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/ LA - ru ID - VYURU_2012_11_a0 ER -
%0 Journal Article %A S. A. Zagrebina %T The Multipoint Initial-finish Problem for Hoff Linear Model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2012 %P 4-12 %N 11 %U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/ %G ru %F VYURU_2012_11_a0
S. A. Zagrebina. The Multipoint Initial-finish Problem for Hoff Linear Model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/
[1] N. J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20
[2] Sidorov N. A., Common Questions of Regularity in Problems of Ramification Theory, Publisher Irkutsk Gos. Univ., Irkutsk, 1982 | MR | Zbl
[3] Sidorov N. A., Romanova O. A., “Application of Certain Results of Branching Theory in the Solution of Degenerate Differential Equations”, Differential Equations, 19:9 (1983), 1516–1526 | MR | Zbl
[4] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Differential Equations with a Fredholm Operator at the Derivative”, Differential Equations, 23:4 (1987), 726–728 | MR | Zbl
[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl
[6] Sviridyuk G. A., Kazak V. O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | DOI | MR | Zbl
[7] Sviridyuk G. A., Trineeva I. K., “A Whitney Fold in the Phase Space of the Hoff Equation”, Russian Mathematics, 49:10 (2005), 49–55 | MR
[8] Sviridyuk G. A., Shemetova V. V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | Zbl
[9] Sviridyuk G. A., Bayazitova A. A., “On Direct and Inverse Problems for the Hoff Equations on Graph”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1 (18), 6–17 | DOI
[10] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Hoff Equation Stability on a Graph”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1 (15), 6–15 | DOI
[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl
[12] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-type Equations”, J. News of Irkutsk State University. Series «Mathematics», 3:1 (2010), 51–72 | MR
[13] Zagrebina S. A., Soloveva N. P., “The Initial-Finish Problem for Evolution Sobolev Type Equations on a Graph”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2008, no. 15 (115), issue 1, 23–26 | Zbl
[14] Zagrebina S. A., “The Initial-Finish Problem for the Navier–Stokes Linear System”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (241), issue 7, 35–39 | Zbl
[15] Manakova N. A., Dylkov A. G., “Optimal Control of Solutions of Initial-Finish Problem for the Linear Sobolev Type Equations”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 17 (234), issue 8, 113–114 | Zbl
[16] Zamyshlyaeva A. A., “The Initial-Finish Value Problem for Nonhomogenious Boussinesque–Löve Equation”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 37 (254), issue 10, 22–29
[17] Keller A. V., “The Algorithm for Solution of the Showalter–Sidorov Problem for Leontief Type Models”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (241), issue 7, 40–46 | Zbl
[18] Shestakov A. L., Keller A. V., Nazarova E. I., “The Numerical Solution of the Optimal Demension Problem”, Automation and Remote Control, 72:12 (2011), 2524–2533