The Multipoint Initial-finish Problem for Hoff Linear Model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Article is devoted to the single-digit solvability of multipoint initial-finish value problem for a linear Sobolev-type equations. We prove a generalized theorem of the splitting of the space and operators actions. The obtained abstract results are implemented in a specific situation.
Mots-clés : Sobolev type equation
Keywords: multipoint initial-finish problem, relatively $p$-bounded operators, Hoff linear model.
@article{VYURU_2012_11_a0,
     author = {S. A. Zagrebina},
     title = {The {Multipoint} {Initial-finish} {Problem} for {Hoff} {Linear} {Model}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--12},
     year = {2012},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/}
}
TY  - JOUR
AU  - S. A. Zagrebina
TI  - The Multipoint Initial-finish Problem for Hoff Linear Model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 4
EP  - 12
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/
LA  - ru
ID  - VYURU_2012_11_a0
ER  - 
%0 Journal Article
%A S. A. Zagrebina
%T The Multipoint Initial-finish Problem for Hoff Linear Model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 4-12
%N 11
%U http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/
%G ru
%F VYURU_2012_11_a0
S. A. Zagrebina. The Multipoint Initial-finish Problem for Hoff Linear Model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 11 (2012), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURU_2012_11_a0/

[1] N. J. Hoff, “Creep buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20

[2] Sidorov N. A., Common Questions of Regularity in Problems of Ramification Theory, Publisher Irkutsk Gos. Univ., Irkutsk, 1982 | MR | Zbl

[3] Sidorov N. A., Romanova O. A., “Application of Certain Results of Branching Theory in the Solution of Degenerate Differential Equations”, Differential Equations, 19:9 (1983), 1516–1526 | MR | Zbl

[4] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Differential Equations with a Fredholm Operator at the Derivative”, Differential Equations, 23:4 (1987), 726–728 | MR | Zbl

[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl

[6] Sviridyuk G. A., Kazak V. O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | DOI | MR | Zbl

[7] Sviridyuk G. A., Trineeva I. K., “A Whitney Fold in the Phase Space of the Hoff Equation”, Russian Mathematics, 49:10 (2005), 49–55 | MR

[8] Sviridyuk G. A., Shemetova V. V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | Zbl

[9] Sviridyuk G. A., Bayazitova A. A., “On Direct and Inverse Problems for the Hoff Equations on Graph”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1 (18), 6–17 | DOI

[10] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Hoff Equation Stability on a Graph”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1 (15), 6–15 | DOI

[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003, 228 pp. | MR | Zbl

[12] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-type Equations”, J. News of Irkutsk State University. Series «Mathematics», 3:1 (2010), 51–72 | MR

[13] Zagrebina S. A., Soloveva N. P., “The Initial-Finish Problem for Evolution Sobolev Type Equations on a Graph”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2008, no. 15 (115), issue 1, 23–26 | Zbl

[14] Zagrebina S. A., “The Initial-Finish Problem for the Navier–Stokes Linear System”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (241), issue 7, 35–39 | Zbl

[15] Manakova N. A., Dylkov A. G., “Optimal Control of Solutions of Initial-Finish Problem for the Linear Sobolev Type Equations”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 17 (234), issue 8, 113–114 | Zbl

[16] Zamyshlyaeva A. A., “The Initial-Finish Value Problem for Nonhomogenious Boussinesque–Löve Equation”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 37 (254), issue 10, 22–29

[17] Keller A. V., “The Algorithm for Solution of the Showalter–Sidorov Problem for Leontief Type Models”, Vestnik Yuzhno-Ural'skogo universiteta. Seria «Matematicheskoe modelirovanie i programmirovanie», 2011, no. 4 (241), issue 7, 40–46 | Zbl

[18] Shestakov A. L., Keller A. V., Nazarova E. I., “The Numerical Solution of the Optimal Demension Problem”, Automation and Remote Control, 72:12 (2011), 2524–2533