Stable methods for reconstruction of noisy images
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 32-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the numerical reconstruction of noisy images by using two regularization algorithms. The basis of algorithms is Tikhonov regularization with two special nondifferentiable stabilizers. To solve the problem of a nonsmooth minimizing the proximal method and the subgradient process are involved. The results of calculations on the supercomputer «Uranus» are presented.
Keywords: numerical methods, algorithms, ill-posed problems, inverse problems, iterative regularization, nonsmooth optimization.
@article{VYURU_2011_9_a3,
     author = {T. I. Serezhnikova},
     title = {Stable methods for reconstruction of noisy images},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {32--42},
     year = {2011},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_9_a3/}
}
TY  - JOUR
AU  - T. I. Serezhnikova
TI  - Stable methods for reconstruction of noisy images
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 32
EP  - 42
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_9_a3/
LA  - ru
ID  - VYURU_2011_9_a3
ER  - 
%0 Journal Article
%A T. I. Serezhnikova
%T Stable methods for reconstruction of noisy images
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 32-42
%N 9
%U http://geodesic.mathdoc.fr/item/VYURU_2011_9_a3/
%G ru
%F VYURU_2011_9_a3
T. I. Serezhnikova. Stable methods for reconstruction of noisy images. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 32-42. http://geodesic.mathdoc.fr/item/VYURU_2011_9_a3/

[1] V. V. Vasin, “Regularization and iterative approximation for linear ill-posed problems in the space of functions of bounded variation”, Proc. Steclov Inst. Math., 1, 2002, S225–S229 | MR

[2] V. V. Vasin, “Approksimatsiya negladkikh reshenii lineinykh nekorrektnykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 64–77 | Zbl

[3] V. V. Vasin, T. I. Serezhnikova, “Dvukhetapnyi metod approksimatsii negladkikh reshenii i vosstanovlenie zashumlennogo izobrazheniya”, Avtomatika i telemekhanika, 2004, no. 2, 126–135 | MR | Zbl

[4] V. V. Vasin, T. I. Serezhnikova, “Regulyarnyi algoritm approksimatsii negladkikh reshenii dlya integralnykh uravnenii Fredgolma pervogo roda”, Vychislitelnye tekhnologii, 15:2 (2010), 15–23 | Zbl

[5] V. V. Vasin, Proksimalnyi algoritm s proektirovaniem v zadachakh vypuklogo programmirovaniya, Preprint, In–t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1982 | MR

[6] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1976

[7] V. S. Sizikov, Matematicheskie metody obrabotki rezultatov izmerenii, Politekhnika, SPb., 2001, 240 pp. | MR

[8] A. S. Leonov, Reshenie nekorrektno postavlennykh obratnykh zadach: ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Knizh. dom «Librokom», M., 2010, 336 pp.

[9] V. A. Belokurov, E. V. Shimanovskaya, M. V. Sazhin i dr., “Vosstanovlenie izobrazheniya gravitatsionnoi QSO linzy 2237+0305 «Krest Einshteina»”, Astronom. zhurnal, 78:10 (2001), 1–11

[10] A. B. Bakushinskii, V. S. Sizikov, “Nekotorye nestandartnye regulyarizuyuschie algoritmy i ikh chislennaya realizatsiya”, Zhurn. vychisl. matem. i matem. fiziki, 22:3 (1982), 532–539 | MR

[11] C. R. Vogel, Computational methods for inverse problems, SIAM, Philadelphia, 2002 | MR | Zbl

[12] S. Uebb (red.), Fizika vizualizatsii izobrazhenii v meditsine, v 2-kh t., per. s angl., v. 2, Mir, M., 1991

[13] E. Dzh. Cheisson, “Pervye rezultaty s kosmicheskogo teleskopa «Khabbl»”, V mire nauki, 1992, no. 8, 6–14

[14] G. Endryus, Primenenie vychislitelnykh mashin dlya obrabotki izobrazhenii, Energiya, M., 1977

[15] R. Ernst, Dzh. Bodenkhauzen, A. Vokaun, YaMR v odnom i dvukh izmereniyakh, Mir, M., 1990

[16] A. Kawanaka, M. Takagi, “Estimation of static magnetic field and gradient fields from NMR image”, J. Phys. Sci. Instrum., 19 (1986), 871–875 | DOI

[17] R. Beits, M. Mak-Donnell, Vosstanovlenie i rekonstruktsiya izobrazhenii, Mir, M., 1989

[18] R. T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimization, 14:5 (1976), 871–898 | DOI | MR