Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 22-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the optimality under the order of a method of projection regularization with reference to the decision of one boundary inverse problem of thermal diagnostics for the equation with variable factor is proved. The estimation of an error of the constructed approached decision, dependent on a point in which intermediate gauging temperature is made is received.
Keywords: boundary inverse problems, ill-posed problems, the method of projection regularization, optimum estimations under the order.
@article{VYURU_2011_9_a2,
     author = {A. S. Kutuzov},
     title = {Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {22--31},
     year = {2011},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/}
}
TY  - JOUR
AU  - A. S. Kutuzov
TI  - Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 22
EP  - 31
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/
LA  - ru
ID  - VYURU_2011_9_a2
ER  - 
%0 Journal Article
%A A. S. Kutuzov
%T Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 22-31
%N 9
%U http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/
%G ru
%F VYURU_2011_9_a2
A. S. Kutuzov. Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 22-31. http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/

[1] B. M. Pankratov, Yu. V. Polezhaev, A. K. Rudko, Vzaimodeistvie materialov s vysokotemperaturnymi gazovymi potokami, Mashinostroenie, M., 1976

[2] Yu. V. Polezhaev, F. B. Yurevich, Teplovaya zaschita, Energiya, M., 1976

[3] V. P. Tanana, “Ob otsenke pogreshnosti metoda resheniya odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 451–465 | MR | Zbl

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[5] V. P. Tanana, “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurnal vychisl. matem., 7:2 (2004), 117–132 | MR | Zbl

[6] A. S. Kutuzov, “Otsenka priblizhennogo resheniya odnoi dvumernoi granichnoi obratnoi zadachi teplovoi diagnostiki metodom kvaziobrascheniya”, Vestn. YuUrGU. Seriya «Matematika, fizika, khimiya», 10:12 (2009), 14–21 | MR