@article{VYURU_2011_9_a2,
author = {A. S. Kutuzov},
title = {Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {22--31},
year = {2011},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/}
}
TY - JOUR AU - A. S. Kutuzov TI - Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 22 EP - 31 IS - 9 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/ LA - ru ID - VYURU_2011_9_a2 ER -
%0 Journal Article %A A. S. Kutuzov %T Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 22-31 %N 9 %U http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/ %G ru %F VYURU_2011_9_a2
A. S. Kutuzov. Optimum estimation under the order of the approached decision of one boundary inverse problem for the equation of heat conductivity with variable factor. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 22-31. http://geodesic.mathdoc.fr/item/VYURU_2011_9_a2/
[1] B. M. Pankratov, Yu. V. Polezhaev, A. K. Rudko, Vzaimodeistvie materialov s vysokotemperaturnymi gazovymi potokami, Mashinostroenie, M., 1976
[2] Yu. V. Polezhaev, F. B. Yurevich, Teplovaya zaschita, Energiya, M., 1976
[3] V. P. Tanana, “Ob otsenke pogreshnosti metoda resheniya odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 451–465 | MR | Zbl
[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[5] V. P. Tanana, “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurnal vychisl. matem., 7:2 (2004), 117–132 | MR | Zbl
[6] A. S. Kutuzov, “Otsenka priblizhennogo resheniya odnoi dvumernoi granichnoi obratnoi zadachi teplovoi diagnostiki metodom kvaziobrascheniya”, Vestn. YuUrGU. Seriya «Matematika, fizika, khimiya», 10:12 (2009), 14–21 | MR