Parallel global optimization methods for identification of the dynamic balance normative model of regional economy
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 4-15
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructed in Dorodnicyn Computing Center of the Russian Academy of Sciences dynamic models of regional economy contain a lot of unknown parameters. It is possible to identify them by minimization of nonlinear criteria of affinity for calculated and statistical data. In this paper a parallel index method of global optimization developed in Nizhny Novgorod State University is applied for that. The method uses a reduction of dimension on the basis of Peano curves and the information-statistical approach added with different updating.
Keywords: identification of mathematical model, regional economy, global optimization, index approach, local-global strategy, parallel algorithms.
@article{VYURU_2011_9_a0,
     author = {V. P. Gergel and V. A. Gorbachev and N. N. Olenev and V. V. Ryabov and S. V. Sidorov},
     title = {Parallel global optimization methods for identification of the dynamic balance normative model of regional economy},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--15},
     year = {2011},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_9_a0/}
}
TY  - JOUR
AU  - V. P. Gergel
AU  - V. A. Gorbachev
AU  - N. N. Olenev
AU  - V. V. Ryabov
AU  - S. V. Sidorov
TI  - Parallel global optimization methods for identification of the dynamic balance normative model of regional economy
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 4
EP  - 15
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_9_a0/
LA  - ru
ID  - VYURU_2011_9_a0
ER  - 
%0 Journal Article
%A V. P. Gergel
%A V. A. Gorbachev
%A N. N. Olenev
%A V. V. Ryabov
%A S. V. Sidorov
%T Parallel global optimization methods for identification of the dynamic balance normative model of regional economy
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 4-15
%N 9
%U http://geodesic.mathdoc.fr/item/VYURU_2011_9_a0/
%G ru
%F VYURU_2011_9_a0
V. P. Gergel; V. A. Gorbachev; N. N. Olenev; V. V. Ryabov; S. V. Sidorov. Parallel global optimization methods for identification of the dynamic balance normative model of regional economy. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 9 (2011), pp. 4-15. http://geodesic.mathdoc.fr/item/VYURU_2011_9_a0/

[1] R. G. Strongin, Poisk globalnogo optimuma, Novoe v zhizni, nauke, tekhnike. Ser. Matematika, kibernetika, 2, Znanie, M., 1990, 47 pp. | MR

[2] N. N. Olenev, “Model otsenki innovatsionnogo potentsiala regionalnoi ekonomiki”, Ekonomika depressivnykh regionov: Problemy i perspektivy razvitiya regionalnykh ekonomik, Tr. mezhdunar. nauch.-prakt. konf. (Barnaul, 2007), eds. V. I. Belyaev, I. N. Dubina, O. P. Mamchenko, 178–188

[3] N. N. Olenev, V. S. Starodubtseva, “Issledovanie vliyaniya tenevogo oborota na sotsialno-ekonomicheskoe polozhenie v Respublike Altai”, Regionalnaya ekonomika: teoriya i praktika, 2008, no. 11(68), aprel, 32–37

[4] N. N. Olenev, Kh. Yu. Soliev, “Imitatsionnaya model razvivayuscheisya ekonomiki na primere respubliki Tadzhikistan”, Matematika. Kompyuter. Obrazovanie, sb. tr. XVII mezhdunar. konf. (Izhevsk, 2010), v. 2, ed. G. Yu. Riznichenko, 173–181

[5] N. N. Olenev, V. A. Gorbachev, “Identifikatsiya modeli dobyvayuschego sektora ekonomiki Mongolii”, VI Moskovskaya mezhdunarodnaya konferentsiya po issledovaniyu operatsii, ORM2010 (Moskva, 19–23 oktyabrya 2010 g.), eds. P. S. Krasnoschekov, A. A. Vasin, M., 2010, 97–98

[6] N. K. Zavriev, I. G. Pospelov, L. Ya. Pospelova, “Issledovanie matematicheskikh modelei ekonomiki sredstvami sistemy EKOMOD”, Matem. modelirovanie, 15:8 (2003), 57–74 | MR

[7] R. G. Strongin, “Parallelnaya mnogoekstremalnaya optimizatsiya s ispolzovaniem mnozhestva razvertok”, Zhurn. vychisl. matem. i matem. fiziki, 31:8 (1991), 1173–1185 | MR

[8] R. G. Strongin, Ya. D. Sergeyev, Global optimization with non-convex constraints. Sequential and parallel algorithms, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl

[9] K. A. Barkalov, Uskorenie skhodimosti v zadachakh uslovnoi globalnoi optimizatsii, izd-vo Nizhegorod. gos. un-ta, Nizhnii Novgorod, 2005

[10] K. A. Barkalov, V. V. Ryabov, S. V. Sidorov, “Ispolzovanie krivykh Peano v parallelnoi globalnoi optimizatsii”, Materialy Devyatoi mezhdunarodnoi konferentsii-seminara «Vysokoproizvoditelnye parallelnye vychisleniya na klasternykh sistemakh» (Vladimir, 2009), 44–47

[11] K. A. Barkalov, V. V. Ryabov, S. V. Sidorov, “O nekotorykh sposobakh balansirovki lokalnogo i globalnogo poiska v parallelnykh algoritmakh globalnoi optimizatsii”, Vychislitelnye metody i programmirovanie, 11 (2010), 382–387 | Zbl