A parallel algorithm based on an extended Schwarz domain decomposition method for the solution of fractional evolution equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 85-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extension of the Schwarz domain decomposition method to evolution equations with fractional time derivatives is considered and its convergence is proved. The numerical scheme and scheme of parallelization for the proposed algorithm are described. An efficiency estimation of the algorithm is given.
Keywords: parallel algorithm, Schwarz domain decomposition method, fractional derivative
Mots-clés : fractional evolution equation.
@article{VYURU_2011_8_a9,
     author = {S. Yu. Lukashchuk},
     title = {A parallel algorithm based on an extended {Schwarz} domain decomposition method for the solution of fractional evolution equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {85--91},
     year = {2011},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_8_a9/}
}
TY  - JOUR
AU  - S. Yu. Lukashchuk
TI  - A parallel algorithm based on an extended Schwarz domain decomposition method for the solution of fractional evolution equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 85
EP  - 91
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_8_a9/
LA  - ru
ID  - VYURU_2011_8_a9
ER  - 
%0 Journal Article
%A S. Yu. Lukashchuk
%T A parallel algorithm based on an extended Schwarz domain decomposition method for the solution of fractional evolution equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 85-91
%N 8
%U http://geodesic.mathdoc.fr/item/VYURU_2011_8_a9/
%G ru
%F VYURU_2011_8_a9
S. Yu. Lukashchuk. A parallel algorithm based on an extended Schwarz domain decomposition method for the solution of fractional evolution equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 85-91. http://geodesic.mathdoc.fr/item/VYURU_2011_8_a9/

[1] S. P. Kopysov, I. V. Krasnoperov, V. N. Rychkov, “Ob'ektno-orientirovannyi metod dekompozitsii oblasti”, Vychislitelnye metody i programmirovanie, 4 (2003), 1–18

[2] M. J. Gander, G. H. Golub, “A Non-Overlapping Optimized Schwarz Method which Converges with Arbitrarily Weak Dependence on h”, Proc. of the Fourteenth International Conference on Domain Decomposition Methods (Cocoyos, Mexico, 2003), 281–288 | MR

[3] M. J. Gander, L. Halpern, F. Nataf, “Optimized Schwarz methods”, Proc. of the Twelfth International Conference on Domain Decomposition Methods (Chiba, Japan, 2001), 15–28 | MR

[4] M. J. Gander, L. Halpern, F. Nataf, “Optimal convergence for overlapping and nonoverlapping Schwarz waveform relaxation”, Proc. of the Eleventh international Conference on Domain Decomposition Methods (Greenwich, Great Britain, 1999), 27–36 | MR

[5] I. Podlubny, Fractional Differential Equations, Academic press, San Diego, 1999 | MR | Zbl

[6] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: A fractional dynamic approach”, Phys. Rep., 339 (2000), 1–77 | DOI | MR | Zbl