Optimal measurement of dynamically distorted signals
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 70-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There has been suggested new approach to measure a signal distorted as by inertial measurement transducer, as by its resonances.
Keywords: optimal measurement, dynamically distorted signals, resonances, optimal control, Leontief type system.
@article{VYURU_2011_8_a7,
     author = {A. L. Shestakov and G. A. Sviridyuk},
     title = {Optimal measurement of dynamically distorted signals},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {70--75},
     year = {2011},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_8_a7/}
}
TY  - JOUR
AU  - A. L. Shestakov
AU  - G. A. Sviridyuk
TI  - Optimal measurement of dynamically distorted signals
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 70
EP  - 75
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_8_a7/
LA  - en
ID  - VYURU_2011_8_a7
ER  - 
%0 Journal Article
%A A. L. Shestakov
%A G. A. Sviridyuk
%T Optimal measurement of dynamically distorted signals
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 70-75
%N 8
%U http://geodesic.mathdoc.fr/item/VYURU_2011_8_a7/
%G en
%F VYURU_2011_8_a7
A. L. Shestakov; G. A. Sviridyuk. Optimal measurement of dynamically distorted signals. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 70-75. http://geodesic.mathdoc.fr/item/VYURU_2011_8_a7/

[1] V. A. Granovskii, Dynamic Measurements, Energoizdat, Leningrad, 1984, in Russian pp.

[2] A. L. Shestakov, “Dynamic accuracy of measurement transduser with a sensor-model based compensating divice”, Metrology, 1987, no. 2, 26–34 (in Russian) | MR

[3] P. M. Derusso, R. J. Roy, C. M. Close, State Variables for Engineers, Wiley, N.-Y.–London–Sydney, 1965

[4] A. L. Shestakov, “Dynamic error correction method”, IEEE Transactions on Instrumentation and Measurement, 45:1 (1996), 250–255 | DOI

[5] A. L. Shestakov, G. A. Sviridyuk, “A new approach to measurement of dinamically distorted signal”, Vestn. SUSU, seriya «Mathematicheskoe modelirovanie i programmirovanie», 16 (192):5 (2010), 116–120 (in Russian) | MR | Zbl

[6] A. V. Keller, E. I. Nazarova, “The regularization property and the computational solution of the dynanic measure problem”, Vestn. SUSU, seriya «Mathematicheskoe modelirovanie i programmirovanie», 16 (192):5 (2010), 32–38 (in Russian) | Zbl

[7] M. N. Bizyaev, Dynamic models and algorithms for restoring the dynamically destorted signals in measuring systems using in sliding modese, Ph. D. Thesis: 05.13.01, Chelyabinsk, 2004, 179 pp. (in Russian)

[8] D. Y. Iosifov, Dynamic models and signal restoration algorithms for measurements systems with observable state vector, Ph. D. Thesis: 05.13.01, Chelyabinsk, 2007, in Russian pp.

[9] A. L. Shestakov, G. A. Sviridyuk, E. V. Zaharova, “Dynamical measurement as an optimal control problem”, Obozrenie prikladnoy i promishlennoy matematiki, 16:4 (2009), 732–733 (in Russian)

[10] G. A. Sviridyuk, S. V. Brychev, “Numerical solutions of systems of equations of Leontieff type”, Rus. Math., 47:8 (2003), 44–50 (in Russian) | MR | Zbl

[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-groups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[12] G. A. Sviridyuk, S. A. Zagrebina, “The Showalter–Sidorov problem as a phenomenon of the Sobolev type equations”, Izvestia ISU. Seriya «Mathematics», 3:1 (2010), 104–125 (in Russian) | MR | Zbl

[13] A. A. Zamyshlyaeva, A. V. Yuzeeva, “The initial-finish value problem for the Boussinesque–Löve equation defined on graph”, Vestn. SUSU. Seriya «Mathematicheskoe modelirovanie i programmirovanie», 16 (192):5 (2010), 23–31 (in Russian) | Zbl

[14] N. A. Manakova, E. A. Bogonos, “Optimal control to solutions of the Showalter–Sidorov problem for a Sobolev type equation”, Izvestia ISU. Seriya «Mathematics», 3:1 (2010), 42–53 (in Russian) | MR | Zbl

[15] S. A. Zagrebina, “About Showalter–Sidorov problem”, Izvestia VUZ. Mathematics, 2007, no. 3, 22–28 (in Russian) | MR | Zbl

[16] V. E. Fedorov, M. V. Plehanova, “Optimal control problem for one class of degenerate equations”, Izvestia RAN. Theory and systems of control, 9:2 (2004), 92–102 (in Russian) | Zbl

[17] A. V. Keller, “A numerical solving optimal control problem for degenerate linear systems of ordinary differential equations type system with Showalter–Sidorov initial condition”, Vestn. SUSU. Seriya «Mathematicheskoe modelirovanie i programmirovanie», 27 (127):2 (2010), 50–56 (in Russian)