Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 52-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problems with integral conditions for the linearized Korteweg–de Vries equation are investigated. We prove the existence and uniqueness theorems in the class of regular solutions.
Keywords: linearized Korteweg–de Vries equation, integral boundary conditions, regular solution, existence and uniqueness.
@article{VYURU_2011_8_a5,
     author = {G. A. Lukina},
     title = {Boundary value problems with integral conditions for the linearized {Korteweg{\textendash}de~Vries} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {52--61},
     year = {2011},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_8_a5/}
}
TY  - JOUR
AU  - G. A. Lukina
TI  - Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 52
EP  - 61
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_8_a5/
LA  - ru
ID  - VYURU_2011_8_a5
ER  - 
%0 Journal Article
%A G. A. Lukina
%T Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 52-61
%N 8
%U http://geodesic.mathdoc.fr/item/VYURU_2011_8_a5/
%G ru
%F VYURU_2011_8_a5
G. A. Lukina. Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 52-61. http://geodesic.mathdoc.fr/item/VYURU_2011_8_a5/

[1] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979, 240 pp. | MR | Zbl

[2] T. D. Dzhuraev, Yu. P. Apakov, “Ob avtomodelnom reshenii odnogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 15:2 (2007), 18–26 | DOI | MR

[3] A. M. Abdrakhmanov, A. I. Kozhanov, “Zadacha s nelokalnym granichnym usloviem dlya odnogo klassa uravnenii nechetnogo poryadka”, Izv. vuzov. Matematika, 2007, no. 5, 3–12

[4] A. M. Abdrakhmanov, “O razreshimosti kraevoi zadachi s integralnym granichnym usloviem vtorogo roda dlya uravneniya nechetnogo poryadka”, Matematicheskie zametki, 88:2 (2010), 163–172 | DOI | MR

[5] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[6] S. Ya. Yakubov, Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985

[7] Zh. A. Balkizov, “Kraevaya zadacha dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Matematicheskoe modelirovanie fraktalnykh protsessov, rodstvennye problemy analiza i informatiki, Materialy Pervoi Vseros. konf. molodykh uchenykh (Terskoe, 2010), 39–41