Minimization of functionals with a weak norm on solutions of the degenerate linear equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 36-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work existence and uniqueness theorems are proved for a class of problems with rigid mixed control of linear distributed systems, not solvable with respect to the time derivative, with weak cost functional with respect to the state function. Abstract results are illustrated by example of the control problem for Sobolev type equation with polynomials of high order elliptic selfadjoint operators.
Keywords: оptimal control, distributed system
Mots-clés : Sobolev type equation.
@article{VYURU_2011_8_a3,
     author = {A. F. Islamova},
     title = {Minimization of functionals with a weak norm on solutions of the degenerate linear equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {36--45},
     year = {2011},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_8_a3/}
}
TY  - JOUR
AU  - A. F. Islamova
TI  - Minimization of functionals with a weak norm on solutions of the degenerate linear equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 36
EP  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_8_a3/
LA  - ru
ID  - VYURU_2011_8_a3
ER  - 
%0 Journal Article
%A A. F. Islamova
%T Minimization of functionals with a weak norm on solutions of the degenerate linear equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 36-45
%N 8
%U http://geodesic.mathdoc.fr/item/VYURU_2011_8_a3/
%G ru
%F VYURU_2011_8_a3
A. F. Islamova. Minimization of functionals with a weak norm on solutions of the degenerate linear equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 8 (2011), pp. 36-45. http://geodesic.mathdoc.fr/item/VYURU_2011_8_a3/

[1] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kn., Novosibirsk, 1999

[2] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 438 pp.

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht etc., 2003 | MR | Zbl

[4] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200

[5] G. A. Sviridyuk, A. A. Efremov, “Optimalnoe upravlenie lineinymi uravneniyami tipa Soboleva s otnositelno p-sektorialnymi operatorami”, Differents. uravneniya, 31:11 (1995), 1912–1919 | MR | Zbl

[6] G. A. Sviridyuk, A. A. Efremov, “Zadacha optimalnogo upravleniya dlya lineinykh uravnenii tipa Soboleva”, Izv. vuzov. Matem., 1996, no. 12, 75–83 | MR

[7] G. A. Sviridyuk, M. V. Plekhanova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova”, Differents. uravneniya, 38:7 (2002), 997–998 | MR | Zbl

[8] G. A. Sviridyuk, N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Khoffa”, Sib. zhurn. industr. matematiki, 8:2 (2005), 144–151 | MR

[9] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestnik. Chelyab. gos. un-ta. Ser. «Matematika. Mekhanika. Informatika», 2009, no. 1, 12–19

[10] V. E. Fedorov, M. V. Plekhanova, “Slabye resheniya i problema kvadraticheskogo regulyatora dlya vyrozhdennogo differentsialnogo uravneniya v gilbertovom prostranstve”, Vychislitelnye tekhnologii, 9:2 (2004), 92–102

[11] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[12] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR