The instability of the solutions of the Hoff equations on a graph. Numerical experiment
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 71-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of the paper is the numerical investigation of instability of the zero solution of the Hoff equation, given on a finite connected directed graph.
Mots-clés : Sobolev type equation
Keywords: numerical simulation, instability.
@article{VYURU_2011_7_a9,
     author = {P. O. Pivovarova},
     title = {The instability of the solutions of the {Hoff} equations on a graph. {Numerical} experiment},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {71--74},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a9/}
}
TY  - JOUR
AU  - P. O. Pivovarova
TI  - The instability of the solutions of the Hoff equations on a graph. Numerical experiment
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 71
EP  - 74
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a9/
LA  - ru
ID  - VYURU_2011_7_a9
ER  - 
%0 Journal Article
%A P. O. Pivovarova
%T The instability of the solutions of the Hoff equations on a graph. Numerical experiment
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 71-74
%N 7
%U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a9/
%G ru
%F VYURU_2011_7_a9
P. O. Pivovarova. The instability of the solutions of the Hoff equations on a graph. Numerical experiment. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 71-74. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a9/

[1] N. J. Hoff, “Creep buckling”, Aeron., 7:1 (1956), 1–20

[2] N. A. Sidorov, Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Irkutsk, 1982

[3] N. A. Sidorov, O. A. Romanova, “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii”, Differents. uravneniya, 19:9 (1983), 1516–1526 | MR | Zbl

[4] N. A. Sidorov, M. V. Falaleev, “Obobschennye resheniya differentsialnykh uravnenii s fredgolmovym operatorom pri proizvodnoi”, Differents. uravneniya, 23:4 (1987), 726–728 | Zbl

[5] G. A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 57:3 (1993), 192–207 | Zbl

[6] G. A. Sviridyuk, V. O. Kazak, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Mat. zametki, 71:2 (2002), 292–297 | DOI | MR | Zbl

[7] G. A. Sviridyuk, I. K. Trineeva, “Sborka Uitni v fazovom prostranstve uravneniya Khoffa”, Izv. vuzov. Matematika, 2005, no. 10, 54–60

[8] G. A. Sviridyuk, S. A. Zagrebina, P. O. Pivovarova, “Ustoichivost uravnenii Khoffa na grafe”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2010, no. 1(20), 6–15 | DOI