The algorithm for solution of the Showalter–Sidorov problem for Leontief type models
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 40-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the Showalter–Sidorov problem for Leontief type models. We describe an algorithm for that problem as flowchart of programme written by C++. The experimental results for Leontief type models are presented.
Keywords: the Showalter–Sidorov problem, Leontief type models
Mots-clés : an algorithm of programm.
@article{VYURU_2011_7_a5,
     author = {A. V. Keller},
     title = {The algorithm for solution of the {Showalter{\textendash}Sidorov} problem for {Leontief} type models},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {40--46},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/}
}
TY  - JOUR
AU  - A. V. Keller
TI  - The algorithm for solution of the Showalter–Sidorov problem for Leontief type models
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 40
EP  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/
LA  - ru
ID  - VYURU_2011_7_a5
ER  - 
%0 Journal Article
%A A. V. Keller
%T The algorithm for solution of the Showalter–Sidorov problem for Leontief type models
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 40-46
%N 7
%U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/
%G ru
%F VYURU_2011_7_a5
A. V. Keller. The algorithm for solution of the Showalter–Sidorov problem for Leontief type models. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 40-46. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/

[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-groups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl

[2] V. V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997

[3] S. V. Brychev, G. A. Sviridyuk, “Chislennoe reshenie sistem uravnenii leontevskogo tipa”, Izv. vuzov. Matem., 2003, no. 8, 46–52 | MR | Zbl

[4] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28 | MR | Zbl

[5] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Vychislit. tekhnologii, 8:3 (2003), 45–54 | MR

[6] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differentsialnye uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl

[7] F. R. Gantmakher, Teoriya matrits, 4-e izd., Nauka, M., 1988 | MR | Zbl

[8] A. V. Keller, “Sistemy leontevskogo tipa: klassy zadach s nachalnym usloviem Shouoltera–Sidorova i chislennye resheniya”, Izv. Irkut. gos. un-ta, Seriya «Matematika», 2 (2009), 30–43 | MR

[9] Keller A. V., Showolter–Sidorov problem (shosid problem), svidetelstvo 2010616865, (RU), pravoobladatel GOU VPO «Yuzhno-Uralskii gosudarstvennyi universitet» 210615137; zayavl. 16.08.2010; zaregestr. 14.10.2010, Reestr programm dlya EVM

[10] M. N. Bizyaev, Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime, dis. ... kand. tekh. nauk, YuUrGU, Chelyabinsk, 2004

[11] A. L. Shestakov, G. A. Sviridyuk, “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestn. YuUrGU, ser. «Mat. modelirovanie i programmmirovanie», 16(192):5 (2010), 116–120 | MR | Zbl

[12] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti i chislennoe reshenie zadachi dinamicheskogo izmereniya”, Vestn. YuUrGU, ser. «Matematicheskoe modelirovanie i programmmirovanie», 16(192):5 (2010), 32–38 | Zbl

[13] A. V. Keller, “Algoritm chislennogo resheniya zadachi Shouoltera–Sidorova dlya sistem leontevskogo tipa”, Metody optimizatsii i ikh prilozheniya, Trudy XIV Baikalskoi shkoly-seminara (Irkutsk–Severobaikalsk, 2008), 343–350