Mots-clés : an algorithm of programm.
@article{VYURU_2011_7_a5,
author = {A. V. Keller},
title = {The algorithm for solution of the {Showalter{\textendash}Sidorov} problem for {Leontief} type models},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {40--46},
year = {2011},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/}
}
TY - JOUR AU - A. V. Keller TI - The algorithm for solution of the Showalter–Sidorov problem for Leontief type models JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 40 EP - 46 IS - 7 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/ LA - ru ID - VYURU_2011_7_a5 ER -
%0 Journal Article %A A. V. Keller %T The algorithm for solution of the Showalter–Sidorov problem for Leontief type models %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 40-46 %N 7 %U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/ %G ru %F VYURU_2011_7_a5
A. V. Keller. The algorithm for solution of the Showalter–Sidorov problem for Leontief type models. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 40-46. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a5/
[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-groups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003 | MR | Zbl
[2] V. V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997
[3] S. V. Brychev, G. A. Sviridyuk, “Chislennoe reshenie sistem uravnenii leontevskogo tipa”, Izv. vuzov. Matem., 2003, no. 8, 46–52 | MR | Zbl
[4] S. A. Zagrebina, “O zadache Shouoltera–Sidorova”, Izv. vuzov. Matematika, 2007, no. 3, 22–28 | MR | Zbl
[5] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Vychislit. tekhnologii, 8:3 (2003), 45–54 | MR
[6] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differentsialnye uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl
[7] F. R. Gantmakher, Teoriya matrits, 4-e izd., Nauka, M., 1988 | MR | Zbl
[8] A. V. Keller, “Sistemy leontevskogo tipa: klassy zadach s nachalnym usloviem Shouoltera–Sidorova i chislennye resheniya”, Izv. Irkut. gos. un-ta, Seriya «Matematika», 2 (2009), 30–43 | MR
[9] Keller A. V., Showolter–Sidorov problem (shosid problem), svidetelstvo 2010616865, (RU), pravoobladatel GOU VPO «Yuzhno-Uralskii gosudarstvennyi universitet» 210615137; zayavl. 16.08.2010; zaregestr. 14.10.2010, Reestr programm dlya EVM
[10] M. N. Bizyaev, Dinamicheskie modeli i algoritmy vosstanovleniya dinamicheski iskazhennykh signalov izmeritelnykh sistem v skolzyaschem rezhime, dis. ... kand. tekh. nauk, YuUrGU, Chelyabinsk, 2004
[11] A. L. Shestakov, G. A. Sviridyuk, “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestn. YuUrGU, ser. «Mat. modelirovanie i programmmirovanie», 16(192):5 (2010), 116–120 | MR | Zbl
[12] A. V. Keller, E. I. Nazarova, “Svoistvo regulyarizuemosti i chislennoe reshenie zadachi dinamicheskogo izmereniya”, Vestn. YuUrGU, ser. «Matematicheskoe modelirovanie i programmmirovanie», 16(192):5 (2010), 32–38 | Zbl
[13] A. V. Keller, “Algoritm chislennogo resheniya zadachi Shouoltera–Sidorova dlya sistem leontevskogo tipa”, Metody optimizatsii i ikh prilozheniya, Trudy XIV Baikalskoi shkoly-seminara (Irkutsk–Severobaikalsk, 2008), 343–350