Degenerated integro-differential equations of special kind in Banach spaces and it's applications
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 100-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a special class of degenerated linear integro-differential equations in Banach spaces is investigated by the methods of the theory of fundamental operator-functions of singular integro-differential operators. Sufficient conditions of existence and uniqueness of Cauchy problem of classical solution are obtained. Abstract results are illustrated by two initial boundary value problems, arised in mathematical theory of viscoelasticity.
Keywords: Banach spaces, a fundamental operator-function.
Mots-clés : distributions
@article{VYURU_2011_7_a13,
     author = {M. V. Falaleev and S. S. Orlov},
     title = {Degenerated integro-differential equations of special kind in {Banach} spaces and it's applications},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {100--110},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a13/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - S. S. Orlov
TI  - Degenerated integro-differential equations of special kind in Banach spaces and it's applications
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 100
EP  - 110
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a13/
LA  - ru
ID  - VYURU_2011_7_a13
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A S. S. Orlov
%T Degenerated integro-differential equations of special kind in Banach spaces and it's applications
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 100-110
%N 7
%U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a13/
%G ru
%F VYURU_2011_7_a13
M. V. Falaleev; S. S. Orlov. Degenerated integro-differential equations of special kind in Banach spaces and it's applications. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 100-110. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a13/

[1] M. V. Falaleev, S. S. Orlov, “Nachalno-kraevye zadachi dlya integro-differentsialnykh uravnenii vyazkouprugosti”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:4 (2010), 597–600

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[3] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl

[4] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[5] M. V. Falaleev, E. Yu. Grazhdantseva, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differents. uravneniya, 42:6 (2006), 769–774 | MR | Zbl

[6] M. V. Falaleev, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh sektorialnosti i radialnosti”, Izvestiya vuzov. Matematika, 2006, no. 10, 68–75

[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl

[8] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislit. tekhnologii, 8:4 (2003), 45–54 | MR