About the inverse problem of the spectral analysis
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 91-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give the sufficient conditions imposed on a sequence of complex numbers for which there exists such perturbation operator, that its spectrum is equal to the given sequence. The algorithm of the approximate finding of the perturbation operator is given.
Keywords: a self-adjoint discrete operator, Hilbert space, Laplace operator, an operator of trace class, spectrum, trace, eigenvalues.
Mots-clés : perturbation
@article{VYURU_2011_7_a12,
     author = {A. I. Sedov},
     title = {About the inverse problem of the spectral analysis},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {91--99},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a12/}
}
TY  - JOUR
AU  - A. I. Sedov
TI  - About the inverse problem of the spectral analysis
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 91
EP  - 99
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a12/
LA  - ru
ID  - VYURU_2011_7_a12
ER  - 
%0 Journal Article
%A A. I. Sedov
%T About the inverse problem of the spectral analysis
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 91-99
%N 7
%U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a12/
%G ru
%F VYURU_2011_7_a12
A. I. Sedov. About the inverse problem of the spectral analysis. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 91-99. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a12/

[1] V. V. Dubrovskii, A. V. Nagornyi, “K obratnoi zadache dlya operatora Laplasa s nepreryvnym potentsialom”, Differents. uravn., 26:9 (1990), 1563–1567 | MR

[2] A. I. Sedov, V. V. Dubrovskii (ml.), “Obratnaya zadacha spektralnogo analiza dlya odnogo differentsialnogo operatora v chastnykh proizvodnykh s neyadernoi rezolventoi”, Elektromagnitnye volny i elektronnye sistemy, 10:1–2 (2005), 1–8

[3] A. I. Sedov, G. A. Zakirova, “O suschestvovanii i edinstvennosti resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa na parallelepipede”, Vestn. MaGU. Matematika, 2006, no. 9, 145–149 | Zbl

[4] A. I. Sedov, G. A. Zakirova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na ravnobedrennom pryamougolnom treugolnike”, Vestnik SamGU. Estestvennonauchnaya seriya, 2008, no. 2, 34–42 | MR | Zbl

[5] A. I. Sedov, “O suschestvovanii resheniya odnoi zadachi teorii upravleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:6 (2009), 1120 | MR

[6] A. I. Sedov, “O priblizhennom reshenii obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa”, Vestn. YuUrGU, ser. «Mat. modelirovanie i programmirovanie», 16(192):5 (2010), 73–78 | MR | Zbl

[7] V. A. Sadovnichii, V. E. Podolskii, “Regulyarizovannyi sled ogranichennogo vozmuscheniya operatora s yadernoi rezolventoi”, Differents. uravn., 35:4 (1999), 556–564 | MR | Zbl

[8] V. A. Sadovnichii, V. V. Dubrovskii, S. I. Kadchenko, V. F. Kravchenko, “Vychislenie pervykh sobstvennykh chisel diskretnogo operatora”, Elektromagnitnye volny i elektronnye sistemy, 3:2 (1998), 6–8 | MR