Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 82-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the connection between the Liouville theorem for a nonautonomous system of ordinary differential equations with a resistance movement of Lyapunov. A divergence criterion for the absence of attraction for nonlinear systems of ordinary differential equations is obtained. The functions characterizing the divergence of local and unlimited condensability of trajectories of nonautonomous systems of ordinary differential equations are introduced and evaluated from the bottom.
Mots-clés : Gibbs ensemble, Liouville's theorem
Keywords: the system of ordinary differential equations, the shift operator, homeomorphism, Lyapunov stability.
@article{VYURU_2011_7_a11,
     author = {G. A. Rudykh and D. J. Kiselevich},
     title = {Relationship of {Liouville's} theorem to the stability of motion of nonlinear systems of differential equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {82--90},
     year = {2011},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/}
}
TY  - JOUR
AU  - G. A. Rudykh
AU  - D. J. Kiselevich
TI  - Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 82
EP  - 90
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/
LA  - ru
ID  - VYURU_2011_7_a11
ER  - 
%0 Journal Article
%A G. A. Rudykh
%A D. J. Kiselevich
%T Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 82-90
%N 7
%U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/
%G ru
%F VYURU_2011_7_a11
G. A. Rudykh; D. J. Kiselevich. Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 82-90. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/

[1] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1985

[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966

[3] W. H. Steeb, “Generalized Lioville equation, entropy, and dynamic systems containing limit cycles”, Physica A, 95:1 (1979), 181–190 | DOI | MR

[4] G. A. Rudykh, “Svoistva integralnoi krivoi i resheniya neavtonomnoi sistemy differentsialnykh uravnenii”, Funktsii Lyapunova i ikh primeneniya, Novosibirsk, 1987, 189–190

[5] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980

[6] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[7] V. A. Yaroshevskii, “Priblizhennyi raschet traektorii vkhoda v atmosferu, I”, Kosmicheskie issledovaniya, 2:4 (1964), 507–531

[8] V. A. Yaroshevskii, “Priblizhennyi raschet traektorii vkhoda v atmosferu, II”, Kosmicheskie issledovaniya, 2:5 (1964), 679–697

[9] G. A. Rudykh, “Svyaz teoremy Liuvillya dlya neavtonomnoi sistemy differentsialnykh uravnenii s ustoichivostyu dvizheniya”, Metod funktsii Lyapunova i ego prilozheniya, Novosibirsk, 1984, 157–170