Keywords: the system of ordinary differential equations, the shift operator, homeomorphism, Lyapunov stability.
@article{VYURU_2011_7_a11,
author = {G. A. Rudykh and D. J. Kiselevich},
title = {Relationship of {Liouville's} theorem to the stability of motion of nonlinear systems of differential equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {82--90},
year = {2011},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/}
}
TY - JOUR AU - G. A. Rudykh AU - D. J. Kiselevich TI - Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 82 EP - 90 IS - 7 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/ LA - ru ID - VYURU_2011_7_a11 ER -
%0 Journal Article %A G. A. Rudykh %A D. J. Kiselevich %T Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 82-90 %N 7 %U http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/ %G ru %F VYURU_2011_7_a11
G. A. Rudykh; D. J. Kiselevich. Relationship of Liouville's theorem to the stability of motion of nonlinear systems of differential equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 7 (2011), pp. 82-90. http://geodesic.mathdoc.fr/item/VYURU_2011_7_a11/
[1] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1985
[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966
[3] W. H. Steeb, “Generalized Lioville equation, entropy, and dynamic systems containing limit cycles”, Physica A, 95:1 (1979), 181–190 | DOI | MR
[4] G. A. Rudykh, “Svoistva integralnoi krivoi i resheniya neavtonomnoi sistemy differentsialnykh uravnenii”, Funktsii Lyapunova i ikh primeneniya, Novosibirsk, 1987, 189–190
[5] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980
[6] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967
[7] V. A. Yaroshevskii, “Priblizhennyi raschet traektorii vkhoda v atmosferu, I”, Kosmicheskie issledovaniya, 2:4 (1964), 507–531
[8] V. A. Yaroshevskii, “Priblizhennyi raschet traektorii vkhoda v atmosferu, II”, Kosmicheskie issledovaniya, 2:5 (1964), 679–697
[9] G. A. Rudykh, “Svyaz teoremy Liuvillya dlya neavtonomnoi sistemy differentsialnykh uravnenii s ustoichivostyu dvizheniya”, Metod funktsii Lyapunova i ego prilozheniya, Novosibirsk, 1984, 157–170