Parallel implementation of prediction algorithm in gradient boosting trees method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 82-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several variations of parallel implementations of one of the supervised learning algorithms, Gradient Boosting Trees (GBT), with the use of Intel Threading Building Blocks are described. Results of experimental comparison and performance analysis of different approaches to parallelization are discussed.
Keywords: gradient boosting trees, Intel Threading Building Blocks.
@article{VYURU_2011_10_a8,
     author = {P. N. Druzhkov and N. Yu. Zolotykh and A. N. Polovinkin},
     title = {Parallel implementation of prediction algorithm in gradient boosting trees method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {82--89},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a8/}
}
TY  - JOUR
AU  - P. N. Druzhkov
AU  - N. Yu. Zolotykh
AU  - A. N. Polovinkin
TI  - Parallel implementation of prediction algorithm in gradient boosting trees method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 82
EP  - 89
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a8/
LA  - ru
ID  - VYURU_2011_10_a8
ER  - 
%0 Journal Article
%A P. N. Druzhkov
%A N. Yu. Zolotykh
%A A. N. Polovinkin
%T Parallel implementation of prediction algorithm in gradient boosting trees method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 82-89
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a8/
%G ru
%F VYURU_2011_10_a8
P. N. Druzhkov; N. Yu. Zolotykh; A. N. Polovinkin. Parallel implementation of prediction algorithm in gradient boosting trees method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 82-89. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a8/

[1] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | Zbl

[2] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Wadsworth, 1983 | MR

[3] L. Breiman, “Bagging predictors”, Machine Learning, 26:2 (1996), 123–140

[4] M. Enzweiler, D. M. Gavrila, “Monocular Pedestrian Detection: Survey and Experiments”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:12 (2009), 2179–2195 | DOI

[5] Y. Freund, R. Schapire, “Experiments with a New Boosting Algorithm”, Machine Learning, Proceedings of the Thirteenth International Conference, Morgan Kauffman, San Francisco, 1996, 148–156

[6] J. H. Friedman, Greedy Function Approximation: a Gradient Boosting Machine, Technical report, Dept. of Statistics, Stanford University, 1999

[7] J. H. Friedman, Stochastic Gradient Boosting, Technical report, Dept. of Statistics, Stanford University, 1999

[8] P. Geurts, D. Ernst, L. Wehenkel, “Extremely Randomized Trees”, Machine Learning, 36:1 (2006), 3–42 | DOI | MR

[9] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer-Verlag, 2008 | MR

[10] Intel Threading Building Blocks (data obrascheniya: 07.12.2010) http://www.threadingbuildingblocks.org

[11] OpenCV Wiki (data obrascheniya: 07.12.2010) http://opencv.willowgarage.com/wiki

[12] UCI Machine Learning Repository (data obrascheniya: 07.12.2010) http://archive.ics.uci.edu/ml

[13] Vapnik V., Estimation of dependences based on empirical data, Springer, 1981