The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 40-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy–Dirichlet problem for the linearized system modeling thermoconvection of the incompressible viscoelastic fluid of the nonzero order is considered. This problem is investigated on the base of the theory of relatively $p$-sectorial operators and degenerative semi-groups of operators. The theorem of the existence of the unique solution of this problem is proved and the description of its extended phase space is received.
Mots-clés : Sobolev type equation
Keywords: an incompressible viscoelastic fluid, relatively $p$-sectorial operator, extended phase space.
@article{VYURU_2011_10_a4,
     author = {T. G. Sukacheva},
     title = {The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {40--53},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/}
}
TY  - JOUR
AU  - T. G. Sukacheva
TI  - The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 40
EP  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/
LA  - ru
ID  - VYURU_2011_10_a4
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%T The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 40-53
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/
%G ru
%F VYURU_2011_10_a4
T. G. Sukacheva. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 40-53. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/

[1] Oskolkov A. P., “Initial-value problems for equations of motion Kelvin–Voight and Oldroyd fluids”, Trudy mat. in-ta AN SSSR, 179, 1988, 126–164 | MR

[2] Oskolkov A. P., “Nonlocal problems for a class of nonlinear operator equations arising in the theory of Sobolev type equations”, Zap. nauch. semin. LOMI, 198, 1991, 31–48 | Zbl

[3] Sviridyuk G. A., “On the general operator semigroups theory [K obshchey teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl

[4] Oskolkov A. P., “Some nonstationary linear and quasilinear systems occurring in the study of movement viscous fluids”, Zap. nauch. semin. LOMI AN SSSR, 59, 1976, 133–177 | Zbl

[5] Oskolkov A. P., “On the theory of Voigt liquids”, Zap. nauchn. sem. LOMI, 96, 1980, 233–236 | MR | Zbl

[6] Sviridyuk G. A., “Solubility of the thermal convection of viscoelastic incompressible fluid”, Izv. vuzov. Matem., 1990, no. 12, 65–70 | MR

[7] Sviridyuk G. A., “Phase spaces of semilinear Sobolev type equations with relatively strong sectorial operator”, Algebra i analiz, 6:5 (1994), 216–237

[8] Sukacheva T. G., The study of mathematical models of incompressible viscoelastic fluids, dis. ... Dr. Sci. Science, Velikiy Novgorod, 2004, 249 pp.

[9] Sukacheva T. G., “Unsteady linearized model of the motion of an incompressible viscoelastic fluid”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 77–83

[10] Sukacheva T. G., “Unsteady linearized model of the motion of an incompressible viscoelastic fluid of the high order”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 17 (150):3 (2009), 86–93 | Zbl

[11] Sukacheva T. G., “The problem of thermal convection for a linearized model of the motion of an incompressible viscoelastic fluid”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 16(192):5 (2010), 83–93 | Zbl

[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[13] Sviridyuk G. A., “Quasi-stationary trajectories of semilinear dynamical Sobolev type equations”, Izv. RAN. Ser. Matematika, 57:3 (1993), 192–207 | Zbl

[14] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[15] Sviridyuk G. A., Sukacheva T. G., “Cauchy problem for a class of semilinear Sobolev type equations”, Sib. mat. zhurn., 31:5 (1990), 109–119

[16] Sviridyuk G. A., Sukacheva T. G., “Phase spaces of class of operator equations”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl

[17] Sviridyuk G. A., Sukacheva T. G., “Some mathematical problems of the dynamics of viscoelastic incompressible media”, Vestnik MaGU. Matematika, 2005, no. 8, 5–33

[18] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nonlinear Fredholm maps and Leray–Schauder theory”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR

[19] Marsden Dzh., Mak-Kraken M., Hopf bifurcation and its applications, Mir, M., 1980, 368 pp. | MR

[20] Bokareva T. A., Investigation of phase space of Sobolev type equations with relatively sectorial operators, Dis. ... cand. Sci. Science, Sankt-Peterburg, 1993, 107 pp.

[21] Ladyzhenskaya O. A., The mathematical theory of dinamic of viscous incompressible fluid, 2nd ed., Nauka, M., 1970, 288 pp. | MR

[22] Sviridyuk G. A., “A model of weakly viscoelastic fluid”, Izv. vuzov. Matematika, 1994, no. 1, 62–70 | MR

[23] Sukacheva T. G., “A model of motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order”, Differents. uravn., 33:4 (1997), 552–557 | MR | Zbl

[24] Sviridyuk G. A., “Semilinear Sobolev type equation with relatively bounded operator”, DAN SSSR, 318:4 (1991), 828–831 | Zbl

[25] Sviridyuk G. A., “Semilinear Sobolev type equation with relatively sectorial operators”, Dokl. RAN, 329:3 (1993), 274–277

[26] Sviridyuk G. A., Fedorov V. E., “Analytic semigroup with kernels and linear Sobolev type equations”, Sib. mat. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl

[27] Khenri D., Geometric theory of semilinear parabolic equations, Mir, M., 1985, 376 pp. | MR