Keywords: an incompressible viscoelastic fluid, relatively $p$-sectorial operator, extended phase space.
@article{VYURU_2011_10_a4,
author = {T. G. Sukacheva},
title = {The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {40--53},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/}
}
TY - JOUR AU - T. G. Sukacheva TI - The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 40 EP - 53 IS - 10 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/ LA - ru ID - VYURU_2011_10_a4 ER -
%0 Journal Article %A T. G. Sukacheva %T The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 40-53 %N 10 %U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/ %G ru %F VYURU_2011_10_a4
T. G. Sukacheva. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 40-53. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a4/
[1] Oskolkov A. P., “Initial-value problems for equations of motion Kelvin–Voight and Oldroyd fluids”, Trudy mat. in-ta AN SSSR, 179, 1988, 126–164 | MR
[2] Oskolkov A. P., “Nonlocal problems for a class of nonlinear operator equations arising in the theory of Sobolev type equations”, Zap. nauch. semin. LOMI, 198, 1991, 31–48 | Zbl
[3] Sviridyuk G. A., “On the general operator semigroups theory [K obshchey teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl
[4] Oskolkov A. P., “Some nonstationary linear and quasilinear systems occurring in the study of movement viscous fluids”, Zap. nauch. semin. LOMI AN SSSR, 59, 1976, 133–177 | Zbl
[5] Oskolkov A. P., “On the theory of Voigt liquids”, Zap. nauchn. sem. LOMI, 96, 1980, 233–236 | MR | Zbl
[6] Sviridyuk G. A., “Solubility of the thermal convection of viscoelastic incompressible fluid”, Izv. vuzov. Matem., 1990, no. 12, 65–70 | MR
[7] Sviridyuk G. A., “Phase spaces of semilinear Sobolev type equations with relatively strong sectorial operator”, Algebra i analiz, 6:5 (1994), 216–237
[8] Sukacheva T. G., The study of mathematical models of incompressible viscoelastic fluids, dis. ... Dr. Sci. Science, Velikiy Novgorod, 2004, 249 pp.
[9] Sukacheva T. G., “Unsteady linearized model of the motion of an incompressible viscoelastic fluid”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 77–83
[10] Sukacheva T. G., “Unsteady linearized model of the motion of an incompressible viscoelastic fluid of the high order”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 17 (150):3 (2009), 86–93 | Zbl
[11] Sukacheva T. G., “The problem of thermal convection for a linearized model of the motion of an incompressible viscoelastic fluid”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 16(192):5 (2010), 83–93 | Zbl
[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[13] Sviridyuk G. A., “Quasi-stationary trajectories of semilinear dynamical Sobolev type equations”, Izv. RAN. Ser. Matematika, 57:3 (1993), 192–207 | Zbl
[14] H. A. Levine, “Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[15] Sviridyuk G. A., Sukacheva T. G., “Cauchy problem for a class of semilinear Sobolev type equations”, Sib. mat. zhurn., 31:5 (1990), 109–119
[16] Sviridyuk G. A., Sukacheva T. G., “Phase spaces of class of operator equations”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl
[17] Sviridyuk G. A., Sukacheva T. G., “Some mathematical problems of the dynamics of viscoelastic incompressible media”, Vestnik MaGU. Matematika, 2005, no. 8, 5–33
[18] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nonlinear Fredholm maps and Leray–Schauder theory”, Uspekhi matem. nauk, 32:4 (1977), 3–54 | MR
[19] Marsden Dzh., Mak-Kraken M., Hopf bifurcation and its applications, Mir, M., 1980, 368 pp. | MR
[20] Bokareva T. A., Investigation of phase space of Sobolev type equations with relatively sectorial operators, Dis. ... cand. Sci. Science, Sankt-Peterburg, 1993, 107 pp.
[21] Ladyzhenskaya O. A., The mathematical theory of dinamic of viscous incompressible fluid, 2nd ed., Nauka, M., 1970, 288 pp. | MR
[22] Sviridyuk G. A., “A model of weakly viscoelastic fluid”, Izv. vuzov. Matematika, 1994, no. 1, 62–70 | MR
[23] Sukacheva T. G., “A model of motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order”, Differents. uravn., 33:4 (1997), 552–557 | MR | Zbl
[24] Sviridyuk G. A., “Semilinear Sobolev type equation with relatively bounded operator”, DAN SSSR, 318:4 (1991), 828–831 | Zbl
[25] Sviridyuk G. A., “Semilinear Sobolev type equation with relatively sectorial operators”, Dokl. RAN, 329:3 (1993), 274–277
[26] Sviridyuk G. A., Fedorov V. E., “Analytic semigroup with kernels and linear Sobolev type equations”, Sib. mat. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl
[27] Khenri D., Geometric theory of semilinear parabolic equations, Mir, M., 1985, 376 pp. | MR