Mots-clés : attraction domains
@article{VYURU_2011_10_a3,
author = {M. A. Skvortsova},
title = {Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {30--39},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/}
}
TY - JOUR AU - M. A. Skvortsova TI - Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 30 EP - 39 IS - 10 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/ LA - ru ID - VYURU_2011_10_a3 ER -
%0 Journal Article %A M. A. Skvortsova %T Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 30-39 %N 10 %U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/ %G ru %F VYURU_2011_10_a3
M. A. Skvortsova. Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 30-39. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/
[1] Krasovskiy N. N., Certain problems in the theory of stability of motion, Fizmatgiz, M., 1959 | MR
[2] El'sgol'ts L. E., Norkin S. B., Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 | MR
[3] Hale J., Theory of functional differential equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl
[4] Korenevskiy D. G., Stability of dinamical systems under random perturbations of parameters. Algebraic criteria, Naukova dumka, Kiev, 1989 | MR
[5] K. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, Control Engineering, Birkhäuser, Boston, MA, 2003 | MR | Zbl
[6] V. L. Kharitonov, A. P. Zhabko, “Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems”, Automatica, 39:1 (2003), 15–20 | DOI | MR | Zbl
[7] V. L. Kharitonov, D. Hinrichsen, “Exponential estimates for time delay systems”, Systems Control Lett., 53:5 (2004), 395–405 | DOI | MR | Zbl
[8] S. Mondié, V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: an LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR
[9] V. L. Kharitonov, S. Mondié, J. Collado, “Exponential estimates for neutral time-delay systems: an LMI approach”, IEEE Trans. Automat. Control, 50:5 (2005), 666–670 | DOI | MR
[10] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay”, Differ. Equ., 41:8 (2005), 1196–1200 | DOI | MR | Zbl
[11] Demidenko G. V., Matveeva I. I., “Asymptotic properties of solutions to delay differential equations”, Vestnik NGU. Ser.: Matematika, Mekhanika, Informatika, 5:3 (2005), 20–28
[12] Demidenko G. V., Matveeva I. I., “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Sib. Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl
[13] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl
[14] D. Melchor-Aguilar, S. I. Niculescu, “Estimates of the attraction region for a class of nonlinear time-delay systems”, IMA J. Math. Control Inform., 24:4 (2007), 523–550 | DOI | MR | Zbl
[15] Demidenko G. V., Kotova T. V., Skvortsova M. A., “Stability of solutions to differential equations of neutral type”, Vestnik NGU. Ser.: Matematika, Mekhanika, Informatika, 10:3 (2010), 17–29 | MR
[16] Skvortsova M. A., “Asymptotic stability of the zero solution to quasi-linear systems of neutral type”, Proceedings of the Lobachevsky Mathematical Centre, 40, Kazan, 2010, 307–311
[17] Skvortsova M. A., “Quasi-linear systems of differential equations of neutral type”, Students and Progress in Science and Technology: Mathematics, Materials of XLVIII International Scientific Students Conference (Novosibirsk, 2010), 64