Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 30-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to study a class of systems of differential equations of neutral type. We obtain attraction domains of the zero solution and establish estimates of exponential decay at infinity for solutions. In particular, asymptotic stability of the zero solution follows from these estimates. These results were derived by the use of a modified Lyapunov–Krasovskii functional.
Keywords: systems of quasi-linear equations of neutral type, asymptotic stability, uniform estimates for solutions, modified Lyapunov–Krasovskii functional.
Mots-clés : attraction domains
@article{VYURU_2011_10_a3,
     author = {M. A. Skvortsova},
     title = {Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {30--39},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 30
EP  - 39
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/
LA  - ru
ID  - VYURU_2011_10_a3
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 30-39
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/
%G ru
%F VYURU_2011_10_a3
M. A. Skvortsova. Estimates for solutions and attraction domains of the zero solution to systems of quasi-linear equations of neutral type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 30-39. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a3/

[1] Krasovskiy N. N., Certain problems in the theory of stability of motion, Fizmatgiz, M., 1959 | MR

[2] El'sgol'ts L. E., Norkin S. B., Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 | MR

[3] Hale J., Theory of functional differential equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl

[4] Korenevskiy D. G., Stability of dinamical systems under random perturbations of parameters. Algebraic criteria, Naukova dumka, Kiev, 1989 | MR

[5] K. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, Control Engineering, Birkhäuser, Boston, MA, 2003 | MR | Zbl

[6] V. L. Kharitonov, A. P. Zhabko, “Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems”, Automatica, 39:1 (2003), 15–20 | DOI | MR | Zbl

[7] V. L. Kharitonov, D. Hinrichsen, “Exponential estimates for time delay systems”, Systems Control Lett., 53:5 (2004), 395–405 | DOI | MR | Zbl

[8] S. Mondié, V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: an LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR

[9] V. L. Kharitonov, S. Mondié, J. Collado, “Exponential estimates for neutral time-delay systems: an LMI approach”, IEEE Trans. Automat. Control, 50:5 (2005), 666–670 | DOI | MR

[10] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay”, Differ. Equ., 41:8 (2005), 1196–1200 | DOI | MR | Zbl

[11] Demidenko G. V., Matveeva I. I., “Asymptotic properties of solutions to delay differential equations”, Vestnik NGU. Ser.: Matematika, Mekhanika, Informatika, 5:3 (2005), 20–28

[12] Demidenko G. V., Matveeva I. I., “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Sib. Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl

[13] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[14] D. Melchor-Aguilar, S. I. Niculescu, “Estimates of the attraction region for a class of nonlinear time-delay systems”, IMA J. Math. Control Inform., 24:4 (2007), 523–550 | DOI | MR | Zbl

[15] Demidenko G. V., Kotova T. V., Skvortsova M. A., “Stability of solutions to differential equations of neutral type”, Vestnik NGU. Ser.: Matematika, Mekhanika, Informatika, 10:3 (2010), 17–29 | MR

[16] Skvortsova M. A., “Asymptotic stability of the zero solution to quasi-linear systems of neutral type”, Proceedings of the Lobachevsky Mathematical Centre, 40, Kazan, 2010, 307–311

[17] Skvortsova M. A., “Quasi-linear systems of differential equations of neutral type”, Students and Progress in Science and Technology: Mathematics, Materials of XLVIII International Scientific Students Conference (Novosibirsk, 2010), 64