The initial-finish value problem for nonhomogenious Boussinesque–Löve equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 22-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the initial-finish value problem for the Boussinesque–Löve equation by reducing it to the initial-finish value problem for the Sobolev type equation of the second order. We obtain sufficient conditions about the unique solvability of original and abstract problems.
Keywords: the Sobolev type equations, the $M,N$-functions, the initial-finish value problem.
@article{VYURU_2011_10_a2,
     author = {A. A. Zamyshlyaeva},
     title = {The initial-finish value problem for nonhomogenious {Boussinesque{\textendash}L\"ove} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {22--29},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
TI  - The initial-finish value problem for nonhomogenious Boussinesque–Löve equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 22
EP  - 29
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/
LA  - ru
ID  - VYURU_2011_10_a2
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%T The initial-finish value problem for nonhomogenious Boussinesque–Löve equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 22-29
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/
%G ru
%F VYURU_2011_10_a2
A. A. Zamyshlyaeva. The initial-finish value problem for nonhomogenious Boussinesque–Löve equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 22-29. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/

[1] Uizem J., Linear and nonlinear waves, Mir, M., 1977

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[3] Zagrebina S. A., “On Showalter–Sidorov problem”, Izvestiya vuzov. Matematika, 2007, no. 3, 22–28

[4] Manakova N. A., Dylkov A. G., “Optimal control of solutions of initial-finish problem for the linear Sobolev type equations”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 17 (234):8 (2011), 113–114 | Zbl

[5] Zamyshlyaeva A. A., “The phase spaces of a class of linear sobolev type equations of the second order”, Vychislitel'nye tekhnologii, 8:4 (2003), 45–54 | MR