The initial-finish value problem for nonhomogenious Boussinesque–Löve equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 22-29
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the initial-finish value problem for the Boussinesque–Löve equation by reducing it to the initial-finish value problem for the Sobolev type equation of the second order. We obtain sufficient conditions about the unique solvability of original and abstract problems.
Keywords:
the Sobolev type equations, the $M,N$-functions, the initial-finish value problem.
@article{VYURU_2011_10_a2,
author = {A. A. Zamyshlyaeva},
title = {The initial-finish value problem for nonhomogenious {Boussinesque{\textendash}L\"ove} equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {22--29},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/}
}
TY - JOUR AU - A. A. Zamyshlyaeva TI - The initial-finish value problem for nonhomogenious Boussinesque–Löve equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 22 EP - 29 IS - 10 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/ LA - ru ID - VYURU_2011_10_a2 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %T The initial-finish value problem for nonhomogenious Boussinesque–Löve equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 22-29 %N 10 %U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/ %G ru %F VYURU_2011_10_a2
A. A. Zamyshlyaeva. The initial-finish value problem for nonhomogenious Boussinesque–Löve equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 22-29. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a2/
[1] Uizem J., Linear and nonlinear waves, Mir, M., 1977
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[3] Zagrebina S. A., “On Showalter–Sidorov problem”, Izvestiya vuzov. Matematika, 2007, no. 3, 22–28
[4] Manakova N. A., Dylkov A. G., “Optimal control of solutions of initial-finish problem for the linear Sobolev type equations”, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 17 (234):8 (2011), 113–114 | Zbl
[5] Zamyshlyaeva A. A., “The phase spaces of a class of linear sobolev type equations of the second order”, Vychislitel'nye tekhnologii, 8:4 (2003), 45–54 | MR