Keywords: Pade–Laplace method, ill-posed problem.
@article{VYURU_2011_10_a10,
author = {O. L. Ibryaeva},
title = {A new algorithm for calculating {Pade} approximants and its {Matlab} implementation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {99--107},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/}
}
TY - JOUR AU - O. L. Ibryaeva TI - A new algorithm for calculating Pade approximants and its Matlab implementation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 99 EP - 107 IS - 10 UR - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/ LA - ru ID - VYURU_2011_10_a10 ER -
%0 Journal Article %A O. L. Ibryaeva %T A new algorithm for calculating Pade approximants and its Matlab implementation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 99-107 %N 10 %U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/ %G ru %F VYURU_2011_10_a10
O. L. Ibryaeva. A new algorithm for calculating Pade approximants and its Matlab implementation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/
[1] G. A. Baker, P. Graves-Morris, Pade Approximants, University Press, Cambridge, 1996 | MR | Zbl
[2] S. Cabay, D. K. Choi, “Algebraic computations of scaled Pade fractions”, SIAM J. on Computing, 15:1 (1986), 243–270 | DOI | MR | Zbl
[3] K. O. Geddes, “Symbolic computation of Pade approximants”, ACM Transactions on Mathematical Software, 5:2 (1979), 218–233 | DOI | MR | Zbl
[4] Adukov V. M., “The problem of Pade approximation as the Riemann boundary problem”, Proceedings of NAS of Belarus. Series of physical and mathematical sciences, 2004, no. 4, 55–61
[5] Schestakov A. L., Adukov V. M., Ibryaeva O. L., Semenov A. S., “On Froissart doublets in Pade–Laplace method”, Systems of computer mathematics and their applications, Theses of reports of the International Conference (Smolensk, 2011), 257–259
[6] P. Claverie, A. Denis, E. Yeramian, “The representation of functions through the combined use of integral transforms and Pade approximants: Pade–Laplace analysis of functions as sums of exponentials”, Computer Physics Reports, 1989, no. 9, 247–299 | DOI
[7] G. H. Golub, C. F. Van Loan, Matrix Computations, University Press, Baltimore, 1989, 557–558 pp. | MR | Zbl