A new algorithm for calculating Pade approximants and its Matlab implementation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 99-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new algorithm for calculating a Pade approximant is proposed. The algorithm is based on the choice of the Pade approximant's denominator of least degree. It is shown that the new algorithm does not lead to the appearance of the Froissart doublets in contrast to available procedures for calculating Pade approximants in Maple and Mathematica.
Mots-clés : Pade approximant, Froissart doublets
Keywords: Pade–Laplace method, ill-posed problem.
@article{VYURU_2011_10_a10,
     author = {O. L. Ibryaeva},
     title = {A new algorithm for calculating {Pade} approximants and its {Matlab} implementation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {99--107},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/}
}
TY  - JOUR
AU  - O. L. Ibryaeva
TI  - A new algorithm for calculating Pade approximants and its Matlab implementation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 99
EP  - 107
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/
LA  - ru
ID  - VYURU_2011_10_a10
ER  - 
%0 Journal Article
%A O. L. Ibryaeva
%T A new algorithm for calculating Pade approximants and its Matlab implementation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 99-107
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/
%G ru
%F VYURU_2011_10_a10
O. L. Ibryaeva. A new algorithm for calculating Pade approximants and its Matlab implementation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a10/

[1] G. A. Baker, P. Graves-Morris, Pade Approximants, University Press, Cambridge, 1996 | MR | Zbl

[2] S. Cabay, D. K. Choi, “Algebraic computations of scaled Pade fractions”, SIAM J. on Computing, 15:1 (1986), 243–270 | DOI | MR | Zbl

[3] K. O. Geddes, “Symbolic computation of Pade approximants”, ACM Transactions on Mathematical Software, 5:2 (1979), 218–233 | DOI | MR | Zbl

[4] Adukov V. M., “The problem of Pade approximation as the Riemann boundary problem”, Proceedings of NAS of Belarus. Series of physical and mathematical sciences, 2004, no. 4, 55–61

[5] Schestakov A. L., Adukov V. M., Ibryaeva O. L., Semenov A. S., “On Froissart doublets in Pade–Laplace method”, Systems of computer mathematics and their applications, Theses of reports of the International Conference (Smolensk, 2011), 257–259

[6] P. Claverie, A. Denis, E. Yeramian, “The representation of functions through the combined use of integral transforms and Pade approximants: Pade–Laplace analysis of functions as sums of exponentials”, Computer Physics Reports, 1989, no. 9, 247–299 | DOI

[7] G. H. Golub, C. F. Van Loan, Matrix Computations, University Press, Baltimore, 1989, 557–558 pp. | MR | Zbl