About convergence of scalable algorithm of construction pseudoprojection on convex closed set
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 12-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence theorem for the algorithm of construction pseudoprojection on convex closed set is proved. This algorithm is main part of the iterative method for solving strong separability problem, also it let effective paralleling for a lot of processors.
Keywords: Fejer's mapping, problem of strong separating, iterative method
Mots-clés : pseudoprojection of point.
@article{VYURU_2011_10_a1,
     author = {A. V. Ershova and I. M. Sokolinskaya},
     title = {About convergence of scalable algorithm of construction pseudoprojection on convex closed set},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {12--21},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a1/}
}
TY  - JOUR
AU  - A. V. Ershova
AU  - I. M. Sokolinskaya
TI  - About convergence of scalable algorithm of construction pseudoprojection on convex closed set
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 12
EP  - 21
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a1/
LA  - ru
ID  - VYURU_2011_10_a1
ER  - 
%0 Journal Article
%A A. V. Ershova
%A I. M. Sokolinskaya
%T About convergence of scalable algorithm of construction pseudoprojection on convex closed set
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 12-21
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a1/
%G ru
%F VYURU_2011_10_a1
A. V. Ershova; I. M. Sokolinskaya. About convergence of scalable algorithm of construction pseudoprojection on convex closed set. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 12-21. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a1/

[1] Eremin I. I., Mazurov V. D., Nonstationary processes of mathematical programming, Nauka, M., 1979, 288 pp. | MR

[2] Eremin I. I., “Fejer methods for the strong separability of convex polyhedral sets”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12, 33–43

[3] Eremin I. I., Theory of linear optimization, «Ekaterinburg», Ekaterinburg, 1999, 312 pp.

[4] Ershova A. V., “The algorithm of separation of two convex not intersect polyhedral using Fejer's mappings”, Controlling system and information technology, 2009, no. 1(35), 53–56