The nonlinear projection regularization method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11
Voir la notice de l'article provenant de la source Math-Net.Ru
The projection regularization method was reduced in this article. The regularization parameter was chosen from the residual principle. We obtain an estimate the error of this method on the class of correctness $M_r$.
Keywords:
operator equations, regularization, optimal method, error estimate, ill-posed problem.
@article{VYURU_2011_10_a0,
author = {A. B. Bredikhina},
title = {The nonlinear projection regularization method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {4--11},
publisher = {mathdoc},
number = {10},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/}
}
TY - JOUR AU - A. B. Bredikhina TI - The nonlinear projection regularization method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2011 SP - 4 EP - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/ LA - ru ID - VYURU_2011_10_a0 ER -
%0 Journal Article %A A. B. Bredikhina %T The nonlinear projection regularization method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2011 %P 4-11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/ %G ru %F VYURU_2011_10_a0
A. B. Bredikhina. The nonlinear projection regularization method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/