The nonlinear projection regularization method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The projection regularization method was reduced in this article. The regularization parameter was chosen from the residual principle. We obtain an estimate the error of this method on the class of correctness $M_r$.
Keywords: operator equations, regularization, optimal method, error estimate, ill-posed problem.
@article{VYURU_2011_10_a0,
     author = {A. B. Bredikhina},
     title = {The nonlinear projection regularization method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--11},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/}
}
TY  - JOUR
AU  - A. B. Bredikhina
TI  - The nonlinear projection regularization method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 4
EP  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/
LA  - ru
ID  - VYURU_2011_10_a0
ER  - 
%0 Journal Article
%A A. B. Bredikhina
%T The nonlinear projection regularization method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 4-11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/
%G ru
%F VYURU_2011_10_a0
A. B. Bredikhina. The nonlinear projection regularization method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/