The nonlinear projection regularization method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The projection regularization method was reduced in this article. The regularization parameter was chosen from the residual principle. We obtain an estimate the error of this method on the class of correctness $M_r$.
Keywords: operator equations, regularization, optimal method, error estimate, ill-posed problem.
@article{VYURU_2011_10_a0,
     author = {A. B. Bredikhina},
     title = {The nonlinear projection regularization method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--11},
     year = {2011},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/}
}
TY  - JOUR
AU  - A. B. Bredikhina
TI  - The nonlinear projection regularization method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2011
SP  - 4
EP  - 11
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/
LA  - ru
ID  - VYURU_2011_10_a0
ER  - 
%0 Journal Article
%A A. B. Bredikhina
%T The nonlinear projection regularization method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2011
%P 4-11
%N 10
%U http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/
%G ru
%F VYURU_2011_10_a0
A. B. Bredikhina. The nonlinear projection regularization method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 10 (2011), pp. 4-11. http://geodesic.mathdoc.fr/item/VYURU_2011_10_a0/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and applications, Nauka Publ., M., 1978, 206 pp. | MR

[2] Tanana V. P., Yaparova N. M., “The optimum in order method of solving conditionally-correct problems”, Siberian J. of Numer. Mathematics, 9:4 (2006), 154–168 | Zbl

[3] Menikhes L. D., Tanana V. P., “The finite-dimensional approximation for the Lavrent'ev method”, Siberian J. of Numer. Mathematics, 1:1 (1998), 416–423

[4] Lusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka Publ., M., 1965, 520 pp. | MR

[5] Ivanov V. K., Koroluk T. I., “About the estimation of error in the solving of ill-posed problems”, Comput. Math., and Math. Phys., 9:1 (1969), 30–41 | MR | Zbl

[6] Tanana V. P., Methods for the solution of operator equations, Nauka Publ., M., 1981, 156 pp. | MR