Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 54-65
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work the estimation of an error of approximation and speed of convergence of difference approximations on functional in an optimal control problem for a linear Schrodinger equation with Lions' criterion of quality is established.
Keywords:
a difference method, a Schrodinger equations, Lions' criterion of quality, a convergence on functional.
@article{VYURU_2010_6_a5,
author = {N. M. Mahmudov},
title = {Estimation of speed of convergence difference approximations on functional in optimal control problem for linear {Schrodinger} equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {54--65},
publisher = {mathdoc},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/}
}
TY - JOUR AU - N. M. Mahmudov TI - Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 54 EP - 65 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/ LA - ru ID - VYURU_2010_6_a5 ER -
%0 Journal Article %A N. M. Mahmudov %T Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 54-65 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/ %G ru %F VYURU_2010_6_a5
N. M. Mahmudov. Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 54-65. http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/