Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 54-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work the estimation of an error of approximation and speed of convergence of difference approximations on functional in an optimal control problem for a linear Schrodinger equation with Lions' criterion of quality is established.
Keywords: a difference method, a Schrodinger equations, Lions' criterion of quality, a convergence on functional.
@article{VYURU_2010_6_a5,
     author = {N. M. Mahmudov},
     title = {Estimation of speed of convergence difference approximations on functional in optimal control problem for linear {Schrodinger} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {54--65},
     year = {2010},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/}
}
TY  - JOUR
AU  - N. M. Mahmudov
TI  - Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 54
EP  - 65
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/
LA  - ru
ID  - VYURU_2010_6_a5
ER  - 
%0 Journal Article
%A N. M. Mahmudov
%T Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 54-65
%N 6
%U http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/
%G ru
%F VYURU_2010_6_a5
N. M. Mahmudov. Estimation of speed of convergence difference approximations on functional in optimal control problem for linear Schrodinger equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 54-65. http://geodesic.mathdoc.fr/item/VYURU_2010_6_a5/

[1] M. M. Potapov, A. V. Razgulin, T. Yu. Shameeva, “Approksimatsiya i regulyarizatsiya zadachi optimalnogo upravleniya tipa Shredingera”, Vestn. Moskovsk. un-ta. Vychislitelnaya matematika i kibernetika. Ser. 15, 1987, no. 1, 8–13

[2] A. D. Iskenderov, N. M. Makhmudov, “Optimalnoe upravlenie kvanto-mekhanicheskoi sistemoi s kriteriem kachestva Lionsa”, Izv. ANA, Ser. fiz.-tekh. matem. nauk, XVI:5–6 (1995), 30–35

[3] G. Ya. Yagubov, Optimalnoe upravlenie koeffitsientom kvazilineinogo uravneniya Shredingera, Dis. ... d-ra nauk, Kiev, 1994, 318 pp.

[4] G. Ya. Yagubov, “Raznostnyi metod resheniya zadachi optimalnogo upravleniya koeffitsientom kvazilineinogo uravneniya Shredingera s integralnym kriteriem kachestva po granitse oblasti”, Problemy matematicheskogo modelirovaniya i optimalnogo upravleniya, Baku, 2001, 37–48 | MR

[5] G. Ya. Yagubov, “Skhodimost raznostnogo metoda resheniya zadachi optimalnogo upravleniya dlya nelineinogo uravneniya Shredingera s integralnym kriteriem kachestva”, Vestn. Sumgait. gos. un-ta, 2001, no. 1, 37–42

[6] N. M. Makhmudov, “Raznostnyi metod resheniya zadachi optimalnogo upravleniya dlya uravneniya Shredingera s kriteriem kachestva Lionsa”, Izv. Chelyab. nauch. tsentra, 2009, no. 3(45), 1–6 | MR

[7] A. A. Samarskii, R. D. Lazarov, V. L. Makarov, Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shk., M., 1987, 296 pp.

[8] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR