Potential's restore in the inverse spectral problem for Laplace operator with multiple spectrum
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 25-28
Cet article a éte moissonné depuis la source Math-Net.Ru
Inverse spectral problems with multiple spectrum are investigated. A numerical algorithm of the approximate solution finding is obtained.
Keywords:
Laplace operator, an inverse spectral problem, an approximate solution, a multiple spectrum.
@article{VYURU_2010_6_a2,
author = {G. A. Zakirova},
title = {Potential's restore in the inverse spectral problem for {Laplace} operator with multiple spectrum},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {25--28},
year = {2010},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2010_6_a2/}
}
TY - JOUR AU - G. A. Zakirova TI - Potential's restore in the inverse spectral problem for Laplace operator with multiple spectrum JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2010 SP - 25 EP - 28 IS - 6 UR - http://geodesic.mathdoc.fr/item/VYURU_2010_6_a2/ LA - ru ID - VYURU_2010_6_a2 ER -
%0 Journal Article %A G. A. Zakirova %T Potential's restore in the inverse spectral problem for Laplace operator with multiple spectrum %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2010 %P 25-28 %N 6 %U http://geodesic.mathdoc.fr/item/VYURU_2010_6_a2/ %G ru %F VYURU_2010_6_a2
G. A. Zakirova. Potential's restore in the inverse spectral problem for Laplace operator with multiple spectrum. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 25-28. http://geodesic.mathdoc.fr/item/VYURU_2010_6_a2/
[1] V. V. Dubrovskii, A. V. Nagornyi, “K obratnoi zadache dlya stepeni operatora Laplasa s nepreryvnym potentsialom”, Differents. uravneniya, 26:9 (1990), 1563–1567 | MR
[2] V. V. Dubrovskii, A. V. Nagornyi, “Obratnaya zadacha dlya stepeni operatora Laplasa s potentsialom iz $L_2$”, Differents. uravneniya, 28:9 (1992), 1552–1561 | MR | Zbl
[3] A. I. Sedov, G. A. Zakirova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na ravnobedrennom pryamougolnom treugolnike”, Vestn. SamGU. Estestvennonauchnaya seriya, 2008, no. 2(61), 34–42