Algorithm of exact solution of generalized four-element Riemann–Hilbert boundary problem with rational coefficients and its programm realization
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 4-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for an exact solution of the generalized four-element Riemann–Hilbert boundary problem with rational coefficients on unit cirle was suggested. An algorithm is based on a reduction of the problem to the matrix Riemann boundary problem. The Maple procedure for a realization of the algorithm is made. Calculations in the field ${\mathbb Q}(i)$ are used.
Keywords: Markushevich boundary problem, generalized four-element Riemann–Hilbert boundary problem
Mots-clés : explicit and exact solutions.
@article{VYURU_2010_6_a0,
     author = {V. M. Adukov and A. A. Patrushev},
     title = {Algorithm of exact solution of generalized four-element {Riemann{\textendash}Hilbert} boundary problem with rational coefficients and its programm realization},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {4--11},
     year = {2010},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2010_6_a0/}
}
TY  - JOUR
AU  - V. M. Adukov
AU  - A. A. Patrushev
TI  - Algorithm of exact solution of generalized four-element Riemann–Hilbert boundary problem with rational coefficients and its programm realization
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2010
SP  - 4
EP  - 11
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VYURU_2010_6_a0/
LA  - ru
ID  - VYURU_2010_6_a0
ER  - 
%0 Journal Article
%A V. M. Adukov
%A A. A. Patrushev
%T Algorithm of exact solution of generalized four-element Riemann–Hilbert boundary problem with rational coefficients and its programm realization
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2010
%P 4-11
%N 6
%U http://geodesic.mathdoc.fr/item/VYURU_2010_6_a0/
%G ru
%F VYURU_2010_6_a0
V. M. Adukov; A. A. Patrushev. Algorithm of exact solution of generalized four-element Riemann–Hilbert boundary problem with rational coefficients and its programm realization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 6 (2010), pp. 4-11. http://geodesic.mathdoc.fr/item/VYURU_2010_6_a0/

[1] G. S. Litvinchuk, Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977, 448 pp. | MR | Zbl

[2] Yu. P. Emets, Yu. V. Obnosov, “Tochnoe reshenie zadachi o formirovanii toka v dvoyakoperiodicheskoi geterogennoi sisteme”, Doklady AN SSSR, 309:2 (1990), 319–322

[3] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl

[4] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970, 380 pp. | MR | Zbl

[5] K. M. Rasulov, “Ob odnom metode resheniya granichnoi zadachi Markushevicha v klasse analiticheskikh funktsii”, mezhvuz. sb. nauch. tr., Issledovaniya po kraevym zadacham kompleksnogo analiza i differentsialnym uravneniyam, 3, Smolensk, 2001, 98–108

[6] K. M. Rasulov, “O reshenii obobschennoi granichnoi zadachi Markushevicha v klasse analiticheskikh funktsii”, Sistemy kompyuternoi matematiki i ikh prilozheniya, sb. tr. Mezhdunar. nauch. konf. (Smolensk, 2002), 137–142

[7] L. I. Chibrikova, L. G. Salekhov, “K resheniyu odnoi obschei zadachi lineinogo sopryazheniya analiticheskikh funktsii v sluchae algebraicheskikh konturov”, Tr. seminara po kraev. zadacham, 5, Kazan, 1968, 224–249

[8] V. M. Adukov, “Faktorizatsiya Vinera–Khopfa meromorfnykh matrits-funktsii”, Algebra i analiz, 4:1 (1992), 54–74 | MR

[9] V. M. Adukov, “Faktorizatsiya Vinera–Khopfa kusochno meromorfnykh matrits-funktsii”, Matem. sbornik, 200:8 (2009), 3–24 | DOI

[10] V. M. Adukov, “O tochnom i priblizhennom reshenii zadachi faktorizatsii Vinera–Khopfa dlya meromorfnykh matrits-funktsii”, Vestn. Yuzh.-Ural. gos. un-ta, seriya «Matematika, fizika, khimiya», 7(107):10 (2008), 3–12