Development of an algorithm for detecting defects in glass insulators based on computer vision using a neural network approach
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 35-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents an algorithm for detecting defects in glass insulators using computer vision. Insulators, which are key elements of electrical networks, are subject to various defects, such as bubbles, chips and deformations. Such damage can significantly reduce the service life of insulators. In traditional production conditions, these defects are detected manually, which reduces productivity and increases the likelihood of human factor-based errors. To solve the problem related to manual control restraints, the authors developed an algorithm based on the use of a neural network. The main task of the algorithm is to automatically identify defects that have a significant impact on the mechanical and electrical insulation properties of products. The authors collected a data set for training the neural network and supplemented it with generated images to increase the sample of the location and shape of the considered defects. The paper describes in detail the steps of data preprocessing, including augmenting the contrast to increase the detectability of defects and reducing noise. Fragmenting is described to process defects of various sizes and shapes. Such fragmenting allows detecting defects of different sizes relative to the insulator size.
Keywords: defect detection, computer vision, generalized method of least modules, GMLM.
@article{VYURM_2024_16_4_a4,
     author = {A. V. Korzhov and V. A. Surin and M. A. Cheskidova and P. V. Lonzinger and V. I. Safonov and K. N. Belov},
     title = {Development of an algorithm for detecting defects in glass insulators based on computer vision using a neural network approach},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {35--42},
     year = {2024},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a4/}
}
TY  - JOUR
AU  - A. V. Korzhov
AU  - V. A. Surin
AU  - M. A. Cheskidova
AU  - P. V. Lonzinger
AU  - V. I. Safonov
AU  - K. N. Belov
TI  - Development of an algorithm for detecting defects in glass insulators based on computer vision using a neural network approach
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 35
EP  - 42
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a4/
LA  - ru
ID  - VYURM_2024_16_4_a4
ER  - 
%0 Journal Article
%A A. V. Korzhov
%A V. A. Surin
%A M. A. Cheskidova
%A P. V. Lonzinger
%A V. I. Safonov
%A K. N. Belov
%T Development of an algorithm for detecting defects in glass insulators based on computer vision using a neural network approach
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 35-42
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a4/
%G ru
%F VYURM_2024_16_4_a4
A. V. Korzhov; V. A. Surin; M. A. Cheskidova; P. V. Lonzinger; V. I. Safonov; K. N. Belov. Development of an algorithm for detecting defects in glass insulators based on computer vision using a neural network approach. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a4/

[1] J. Diers, C. Pigorsch, “A Survey of Methods for Automated Quality Control Based on Images”, International Journal of Computer Vision, 131:10 (2023), 2553–2581 | DOI

[2] P. Sharma, S. Gupta, S. Vyas, M. Shabaz, “Retracted: Object Detection and Recognition using Deep Learning-Based Techniques”, IET Communications, 17:13 (2023), 1589–1599 | DOI

[3] B.V. Anisimov, V.D. Kurganov, V.K. Zlobin, Raspoznavanie i tsifrovaya obrabotka izobrazhenii, Vyssh. shk., M., 1983, 295 pp.

[4] G.B. Garsiya, O.D. Suares, Kh.L.E. Aranda i dr., Obrabotka izobrazhenii s pomoschyu OpenCV, DMK Press, M., 2016, 408 pp.

[5] E.A. Blyushtein, A.O. Manturov, “Primenenie nerezkogo maskirovaniya dlya povysheniya rezkosti izobrazheniya v kompyuternoi tomografii”, Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 1:2c(64) (2012), 313–318

[6] V.A. Surin, Matematicheskoe modelirovanie filtratsii kontrastnykh izobrazhenii na osnove obobschennogo metoda naimenshikh modulei, dis.... kand. tekhn. nauk, YuUrGU, Chelyabinsk, 2023, 150 pp.

[7] A.V. Korzhov, P.V. Lonzinger, V.I. Safonov i dr., “Poluchenie dannykh dlya obucheniya sistemy tekhnicheskogo zreniya po vyyavleniyu gazovykh vklyuchenii v steklyannoi detali izolyatora PS-70E”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Energetika, 24:2 (2024), 27–36