Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 29-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper develops algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a star graph with time-varying edge lengths. The change of variables helped to reduce the considered spectral problems to initial-boundary value problems with fixed edges. The obtained formulas were used to find eigenvalues for a wave differential equation set in a star graph with time-varying edges with any ordinal numbers. The formulas for calculating the eigenvalues will allow developing algorithms for solving inverse spectral problems set in quantum graphs with varying edges.
Keywords: eigenvalues and eigenfunctions; discrete and self-conjugate operators; regularized trace method; Galerkin method.
@article{VYURM_2024_16_4_a3,
     author = {S. I. Kadchenko and L. S. Ryazanova},
     title = {Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {29--34},
     year = {2024},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a3/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - L. S. Ryazanova
TI  - Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 29
EP  - 34
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a3/
LA  - ru
ID  - VYURM_2024_16_4_a3
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A L. S. Ryazanova
%T Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 29-34
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a3/
%G ru
%F VYURM_2024_16_4_a3
S. I. Kadchenko; L. S. Ryazanova. Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 29-34. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a3/

[1] S.I. Kadchenko, G.A. Zakirova, “Computation of Eigenvalues of Discrete Lower Semibounded Operators”, Applied Mathematical Sciences, 10:7 (2016), 323–329 | DOI

[2] S.I. Kadchenko, S.N. Kakushkin, “Vychislenie znachenii sobstvennykh funktsii diskretnykh poluogranichennykh operatorov metodom regulyarizovannykh sledov”, Vestnik Samarskogo Universiteta. Estestvennonauchnaya seriya, 2012, no. 6 (97), 13–21

[3] S.I. Kadchenko, I.I. Kinzina, “Vychislenie sobstvennykh znachenii vozmuschennykh diskretnykh poluogranichennykh operatorov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:7 (2006), 1265–1273 | MR

[4] S.I. Kadchenko, A.V. Stavtsova, L.S. Ryazanova, V.V. Dubrovskii, “Algoritmy vychisleniya sobstvennykh znachenii diskretnykh poluogranichennykh operatorov zadannykh na kvantovykh grafakh”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematika. Mekhanika. Fizika», 15:1 (2023), 16–25

[5] S.I. Kadchenko, “Chislennyi metod resheniya obratnykh zadach, porozhdennykh vozmuschennymi samosopryazhennymi vozmuschennymi operatorami, metodom regulyarizovannykh sledov”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 2013, no. 6 (107), 23–30

[6] V.V. Provotorov, “Sobstvennye funktsii zadachi Shturma-Liuvillya na grafe-zvezde”, Matem. sb., 199:10 (2008), 105–126 | DOI

[7] J.P. Keating, “Fluctuation Statistics for Quantum Star Graphs”, Quantum Graphs and Their Applications, Contemporary Mathematics, 415, 2006, 191–200 | DOI | MR

[8] D.U. Matrasulov, J.R. Yusupov, K.K. Sabirov, Z.A. Sobirov, “Time-Dependent Quantum Graph”, Nanosistemy: fizika, khimiya, matematika, 6:2 (2015), 173–181 | MR

[9] D.S. Nikiforov, Model kvantovykh grafov s rebrami menyayuscheisya dliny, dis. ... kand. tekh. nauk, SPb, 2018, 125 pp.