Mots-clés : laser techniques.
@article{VYURM_2024_16_4_a10,
author = {A. V. Krasilnikov and A. I. Nesmiyanov and E. S. Shestakovskaya and A. G. Poptsov and A. E. Kovalev and A. P. Yalovets},
title = {Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {96--106},
year = {2024},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/}
}
TY - JOUR AU - A. V. Krasilnikov AU - A. I. Nesmiyanov AU - E. S. Shestakovskaya AU - A. G. Poptsov AU - A. E. Kovalev AU - A. P. Yalovets TI - Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 96 EP - 106 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/ LA - ru ID - VYURM_2024_16_4_a10 ER -
%0 Journal Article %A A. V. Krasilnikov %A A. I. Nesmiyanov %A E. S. Shestakovskaya %A A. G. Poptsov %A A. E. Kovalev %A A. P. Yalovets %T Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 96-106 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/ %G ru %F VYURM_2024_16_4_a10
A. V. Krasilnikov; A. I. Nesmiyanov; E. S. Shestakovskaya; A. G. Poptsov; A. E. Kovalev; A. P. Yalovets. Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 96-106. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/
[1] M.V. Zhernokletov (red.), Metody issledovaniya svoistv materialov pri intensivnykh dinamicheskikh nagruzkakh, monografiya, 2-e izd., dop. i ispr., FGUP «RFYaTs-VNIIEF», - Sarov, 2005, 428 pp.
[2] R.I. Ilkaev, A. L. Mikhailov, M. V. Zhernokletov (red.), Eksperimentalnye metody i sredstva v fizike ekstremalnykh sostoyanii veschestva: monografiya /, RAN, M., 2021, 484 pp.
[3] B.M. LaLone, O.V. Fat'yanov, J.R. Asay, Y.M. Gupta, “Velocity Correction and Refractive Index Changes for [100] Lithium Fluoride Optical Windows under Shock Compression, Recompression, and Unloading”, J. Appl. Phys., 103:9 (2008), 093505 | DOI
[4] L.J. Wise, L.C. Chhabildas, “Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials”, Shock Waves in Condensed Matter, Plenum, 1986, 441 | DOI
[5] P.A. Rigg, M.D. Knudson, R.J. Scharff, R.S. Hixson, J. Appl. Phys., 116 (2014), 033515, Determining the Refractive Index of Shocked [100] Lithium Fluoride to the Limit of Transmissibility | DOI
[6] C.B. Kormer, “Opticheskie issledovaniya svoistv udarno szhatykh kondensirovannykh dielektrikov”, Uspekhi fizicheskikh nauk, 94:4 (1968), 641–683 | DOI
[7] N.A. Smirnov, “Ab initio Calculations of the Thermodynamic Properties of LiF Crystal”, Physical Review, 83 (2011), 014109 | DOI
[8] Z. Sun, J. Dong, Y. Xia, “First-Principles Calculations of the Structural, Electronic, and Optical Properties of LiF up to 300 GPa”, Physica B, 406 (2011), 3660–3665 | DOI
[9] L. He, M.J. Tang, J. Yin et al., “Effects of the Vacancy Point-Defect on the Refractive Index and Equation of State (EOS) of LiF at High Pressure: A First Principles Investigation”, Physica B, 407 (2012), 694–697 | DOI
[10] X.-W. Sun, Z.-J. Liu, W.-L. Quan et al., “High-Pressure and High-Temperature Physical Properties of LiF Studied by Density Functional Theory Calculations and Molecular Dynamics Simulations”, Journal of Physics and Chemistry of Solids, 116 (2018), 209–215 | DOI
[11] J. Wang, M. Deng, Y. Chen et al, “Structural, Elastic, Electronic and Optical Properties of Lithium Halides (LiF, LiCl, LiBr, and LiI): First-Principal Calculations”, Materials Chemistry and Physics, 244 (2020), 122733 | DOI | MR
[12] “Unsteady Compression Waves in Interferometer Windows/ D. Hayes”, J. Appl. Phys, 89 (2001), 6484 | DOI
[13] Q. Liu, X. Zhou, X. Zeng, S. N. Luo, “Sound Velocity, Equation of State, Temperature and Melting of LiF Single Crystals under Shock Compression”, Journal of Applied Physics, 117 (2015), 045901 | DOI
[14] J. Davis, M. Knudson, L. Shulenburger, S. Crockett, “Mechanical and Optical Response of [100] Lithium Fluoride to Multi-Megabar Dynamic Pressures”, J. Appl. Phys., 120 (2016), 165901 | DOI
[15] G. Young, X. Liu, C. Leng et al., “Refractive Index of [100] Lithium Fluoride under Shock Pressures up to 151 GPa”, AIP Advances, 8 (2018), 125310 | DOI
[16] M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, “Time-Resolved Particle Velocity Measurements at Impact Velocities of 10 km/s”, International Journal of Impact Engineering, 23 (1999), 261–270 | DOI
[17] Z. Sun, J. Dong, Y. Xia, “First-Principles Calculations of the Structural, Electronic, and Optical Properties of LiF up to 300 GPa”, Physica B, 406 (2011), 3660–3665 | DOI
[18] D.E. Fratanduono, T.R. Boehly, M.A. Barrios et al., “Refractive Index of Lithium Fluoride Ramp Compressed to 800 GPa”, J. Appl. Phys., 109 (2011), 123521 | DOI
[19] L.E. Kirsch, S.J. Ali, D.E. Fratanduono et al, “Refractive Index of Lithium Fluoride to 900 Gigapascal and Implications for Dynamic Equation of State Measurements”, J. Appl. Phys, 125 (2019), 175901 | DOI
[20] S.C. Jones, Y. M. Gupta, “Refractive Index and Elastic Properties of Z-Cut Quartz Shocked to 60 kbar”, Journal of Applied Physics, 88 (2000), 5671 | DOI
[21] B.J. Jensen, D.B. Holtkamp, P.A. Rigg, D.H. Dolan, “Accuracy Limits and Window Corrections for Photon Doppler Velocimetry Dolan”, Journal of Applied hysics, 101:1 (2007), 013523 | DOI
[22] W.G. Zhao, X. Zhou, J.B. Li, X.L. Zeng, “Refractive Index of LiF Single Crystal at High Pressure and Its Window Correction”, Chinese Journal of High Pressure Physics, 28 (2014), 571–576
[23] A.P. Yalovets, “Raschet techenii sredy pri vozdeistvii intensivnykh potokov zaryazhennykh chastits”, Prikladnaya mekhanika i tekhnicheskaya fizika, 38:1 (1997), 151–166
[24] N.L. Klinacheva, E.S. Shestakovskaya, A.P. Yalovets, “Modelling of Shock Wave Experiments on Two-Fold Compression of Polymethyl Methacrylate”, Journal of Computational and Engineering Mathematics, 9:2 (2022), 26–38 | DOI
[25] L. Prandtl, “Spannungsverteilung in Plastischen Korper”, Proc. 1st Int. Congr. Appl. Mech. (Delft), 1924, 43
[26] A. Reis, “Uchet uprugoi deformatsii v teorii plastichnosti”, Teoriya plastichnosti, Izd-vo inostrannoi literatury, M., 1948, 206–222
[27] R.K. Belkheeva, “Model koeffitsienta Gryunaizena dlya shirokogo diapazona plotnostei na primere medi”, Teplofizika vysokikh temperatur, 59:4 (2021), 514–519 | DOI
[28] R.F. Trunin (red.), Eksperimentalnye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veschestv, Nauchnoe izdanie, FGUP «RFYaTs-VNIIEF», Sarov, 2006, 531 pp.
[29] S.P. Marsh, LASL Shock Hugoniot Data, University of California Press, 1980, 658 pp.