Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 96-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lithium fluoride (LiF) single crystals are widely used in experiments involving intense dynamic loading as a window for optical methods, such as VISAR or PDV. They are transparent and do not undergo phase transitions under shock compression up to 200 GPa. To interpret experimental data obtained using such a window, it is necessary to introduce a correction coefficient. This coefficient links the apparent mass velocity obtained experimentally to the true mass velocity. While this coefficient is constant for stationary shock waves, it is affected by the spatial non-uniformity of the window's density for more complex flows. The study highlights the experimental investigations of shock-wave processes in lithium fluoride conducted under shock loading up to 90 GPa. Mathematical modeling of the experiments was also performed. For this purpose, the authors built a mathematical model of one-dimensional elastoplastic flows of the medium using the Prandtl–Reuss plasticity model, and constructed the equation of state for lithium fluoride. The correction coefficient was obtained in two ways: based on the dependence of the refractive index on density and the law of mass conservation on the shock wave, and based on the dependence of the optical path length of the laser beam on the density distribution in the material under study.
Keywords: mathematical modeling, refractive index, lithium fluoride, experimental studies
Mots-clés : laser techniques.
@article{VYURM_2024_16_4_a10,
     author = {A. V. Krasilnikov and A. I. Nesmiyanov and E. S. Shestakovskaya and A. G. Poptsov and A. E. Kovalev and A. P. Yalovets},
     title = {Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {96--106},
     year = {2024},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/}
}
TY  - JOUR
AU  - A. V. Krasilnikov
AU  - A. I. Nesmiyanov
AU  - E. S. Shestakovskaya
AU  - A. G. Poptsov
AU  - A. E. Kovalev
AU  - A. P. Yalovets
TI  - Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 96
EP  - 106
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/
LA  - ru
ID  - VYURM_2024_16_4_a10
ER  - 
%0 Journal Article
%A A. V. Krasilnikov
%A A. I. Nesmiyanov
%A E. S. Shestakovskaya
%A A. G. Poptsov
%A A. E. Kovalev
%A A. P. Yalovets
%T Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 96-106
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/
%G ru
%F VYURM_2024_16_4_a10
A. V. Krasilnikov; A. I. Nesmiyanov; E. S. Shestakovskaya; A. G. Poptsov; A. E. Kovalev; A. P. Yalovets. Studying the correction factor of a lithium fluoride crystal during its shock compression and isoentropic unloading. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 96-106. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a10/

[1] M.V. Zhernokletov (red.), Metody issledovaniya svoistv materialov pri intensivnykh dinamicheskikh nagruzkakh, monografiya, 2-e izd., dop. i ispr., FGUP «RFYaTs-VNIIEF», - Sarov, 2005, 428 pp.

[2] R.I. Ilkaev, A. L. Mikhailov, M. V. Zhernokletov (red.), Eksperimentalnye metody i sredstva v fizike ekstremalnykh sostoyanii veschestva: monografiya /, RAN, M., 2021, 484 pp.

[3] B.M. LaLone, O.V. Fat'yanov, J.R. Asay, Y.M. Gupta, “Velocity Correction and Refractive Index Changes for [100] Lithium Fluoride Optical Windows under Shock Compression, Recompression, and Unloading”, J. Appl. Phys., 103:9 (2008), 093505 | DOI

[4] L.J. Wise, L.C. Chhabildas, “Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials”, Shock Waves in Condensed Matter, Plenum, 1986, 441 | DOI

[5] P.A. Rigg, M.D. Knudson, R.J. Scharff, R.S. Hixson, J. Appl. Phys., 116 (2014), 033515, Determining the Refractive Index of Shocked [100] Lithium Fluoride to the Limit of Transmissibility | DOI

[6] C.B. Kormer, “Opticheskie issledovaniya svoistv udarno szhatykh kondensirovannykh dielektrikov”, Uspekhi fizicheskikh nauk, 94:4 (1968), 641–683 | DOI

[7] N.A. Smirnov, “Ab initio Calculations of the Thermodynamic Properties of LiF Crystal”, Physical Review, 83 (2011), 014109 | DOI

[8] Z. Sun, J. Dong, Y. Xia, “First-Principles Calculations of the Structural, Electronic, and Optical Properties of LiF up to 300 GPa”, Physica B, 406 (2011), 3660–3665 | DOI

[9] L. He, M.J. Tang, J. Yin et al., “Effects of the Vacancy Point-Defect on the Refractive Index and Equation of State (EOS) of LiF at High Pressure: A First Principles Investigation”, Physica B, 407 (2012), 694–697 | DOI

[10] X.-W. Sun, Z.-J. Liu, W.-L. Quan et al., “High-Pressure and High-Temperature Physical Properties of LiF Studied by Density Functional Theory Calculations and Molecular Dynamics Simulations”, Journal of Physics and Chemistry of Solids, 116 (2018), 209–215 | DOI

[11] J. Wang, M. Deng, Y. Chen et al, “Structural, Elastic, Electronic and Optical Properties of Lithium Halides (LiF, LiCl, LiBr, and LiI): First-Principal Calculations”, Materials Chemistry and Physics, 244 (2020), 122733 | DOI | MR

[12] “Unsteady Compression Waves in Interferometer Windows/ D. Hayes”, J. Appl. Phys, 89 (2001), 6484 | DOI

[13] Q. Liu, X. Zhou, X. Zeng, S. N. Luo, “Sound Velocity, Equation of State, Temperature and Melting of LiF Single Crystals under Shock Compression”, Journal of Applied Physics, 117 (2015), 045901 | DOI

[14] J. Davis, M. Knudson, L. Shulenburger, S. Crockett, “Mechanical and Optical Response of [100] Lithium Fluoride to Multi-Megabar Dynamic Pressures”, J. Appl. Phys., 120 (2016), 165901 | DOI

[15] G. Young, X. Liu, C. Leng et al., “Refractive Index of [100] Lithium Fluoride under Shock Pressures up to 151 GPa”, AIP Advances, 8 (2018), 125310 | DOI

[16] M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, “Time-Resolved Particle Velocity Measurements at Impact Velocities of 10 km/s”, International Journal of Impact Engineering, 23 (1999), 261–270 | DOI

[17] Z. Sun, J. Dong, Y. Xia, “First-Principles Calculations of the Structural, Electronic, and Optical Properties of LiF up to 300 GPa”, Physica B, 406 (2011), 3660–3665 | DOI

[18] D.E. Fratanduono, T.R. Boehly, M.A. Barrios et al., “Refractive Index of Lithium Fluoride Ramp Compressed to 800 GPa”, J. Appl. Phys., 109 (2011), 123521 | DOI

[19] L.E. Kirsch, S.J. Ali, D.E. Fratanduono et al, “Refractive Index of Lithium Fluoride to 900 Gigapascal and Implications for Dynamic Equation of State Measurements”, J. Appl. Phys, 125 (2019), 175901 | DOI

[20] S.C. Jones, Y. M. Gupta, “Refractive Index and Elastic Properties of Z-Cut Quartz Shocked to 60 kbar”, Journal of Applied Physics, 88 (2000), 5671 | DOI

[21] B.J. Jensen, D.B. Holtkamp, P.A. Rigg, D.H. Dolan, “Accuracy Limits and Window Corrections for Photon Doppler Velocimetry Dolan”, Journal of Applied hysics, 101:1 (2007), 013523 | DOI

[22] W.G. Zhao, X. Zhou, J.B. Li, X.L. Zeng, “Refractive Index of LiF Single Crystal at High Pressure and Its Window Correction”, Chinese Journal of High Pressure Physics, 28 (2014), 571–576

[23] A.P. Yalovets, “Raschet techenii sredy pri vozdeistvii intensivnykh potokov zaryazhennykh chastits”, Prikladnaya mekhanika i tekhnicheskaya fizika, 38:1 (1997), 151–166

[24] N.L. Klinacheva, E.S. Shestakovskaya, A.P. Yalovets, “Modelling of Shock Wave Experiments on Two-Fold Compression of Polymethyl Methacrylate”, Journal of Computational and Engineering Mathematics, 9:2 (2022), 26–38 | DOI

[25] L. Prandtl, “Spannungsverteilung in Plastischen Korper”, Proc. 1st Int. Congr. Appl. Mech. (Delft), 1924, 43

[26] A. Reis, “Uchet uprugoi deformatsii v teorii plastichnosti”, Teoriya plastichnosti, Izd-vo inostrannoi literatury, M., 1948, 206–222

[27] R.K. Belkheeva, “Model koeffitsienta Gryunaizena dlya shirokogo diapazona plotnostei na primere medi”, Teplofizika vysokikh temperatur, 59:4 (2021), 514–519 | DOI

[28] R.F. Trunin (red.), Eksperimentalnye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veschestv, Nauchnoe izdanie, FGUP «RFYaTs-VNIIEF», Sarov, 2006, 531 pp.

[29] S.P. Marsh, LASL Shock Hugoniot Data, University of California Press, 1980, 658 pp.