Socio-ontological multi-agent neurocognitive method of robotic control of process regulations in the working area of a retail enterprise
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the scientific problem of organizing robotic control of violations of process regulations in the working area of a retail enterprise. It investigates the possibility of using an intelligent agent based on a multi-agent neurocognitive architecture in designing a behavior control system for an autonomous retail robot. It also describes an original socio-ontological method for synthesizing behavior control strategies for autonomous robots as part of a human-machine team when solving problems of automating work processes in a retail enterprise. The paper presents the results of computational experiments and comparisons of empirical and socio-ontological multi-agent neurocognitive methods for identifying and ontologizing violations of the working environment processes of a hypermarket sales area using an autonomous mobile retail robot.
Keywords: artificial intelligence, robotics, mobile autonomous robot, multi-agent systems, neurocognitive architectures.
@article{VYURM_2024_16_4_a0,
     author = {M. I. Anchekov and K. Ch. Bzhikhatlov and D. G. Makoeva and Z. V. Nagoev and O. V. Nagoeva and I. A. Pshenokova},
     title = {Socio-ontological multi-agent neurocognitive method of robotic control of process regulations in the working area of a retail enterprise},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--15},
     year = {2024},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a0/}
}
TY  - JOUR
AU  - M. I. Anchekov
AU  - K. Ch. Bzhikhatlov
AU  - D. G. Makoeva
AU  - Z. V. Nagoev
AU  - O. V. Nagoeva
AU  - I. A. Pshenokova
TI  - Socio-ontological multi-agent neurocognitive method of robotic control of process regulations in the working area of a retail enterprise
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 5
EP  - 15
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a0/
LA  - ru
ID  - VYURM_2024_16_4_a0
ER  - 
%0 Journal Article
%A M. I. Anchekov
%A K. Ch. Bzhikhatlov
%A D. G. Makoeva
%A Z. V. Nagoev
%A O. V. Nagoeva
%A I. A. Pshenokova
%T Socio-ontological multi-agent neurocognitive method of robotic control of process regulations in the working area of a retail enterprise
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 5-15
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a0/
%G ru
%F VYURM_2024_16_4_a0
M. I. Anchekov; K. Ch. Bzhikhatlov; D. G. Makoeva; Z. V. Nagoev; O. V. Nagoeva; I. A. Pshenokova. Socio-ontological multi-agent neurocognitive method of robotic control of process regulations in the working area of a retail enterprise. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 4, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURM_2024_16_4_a0/

[1] Z.V. Nagoev, Intellektika, ili Myshlenie v zhivykh i iskusstvennykh sistemakh, Izdatelstvo KBNTs RAN, Nalchik, 2013, 232 pp.

[2] S. Rassel, Iskusstvennyi intellekt: sovremennyi podkhod (AIMA-2), Vilyams, 2019, 1408 pp.

[3] R.V. Mescheryakov, A.S. Shirokov, “Postanovka zadachi geterogennogo gruppovogo vzaimodeistviya robotov pri reshenii zadach umnogo sada”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 16:2 (2024), 41–49

[4] A.L. Ronzhin, M.M. Bizin, S.V. Solenyi, “Matematicheskie modeli i sredstva mnogomodalnogo vzaimodeistviya s robototekhnicheskimi i kiberfizicheskimi sistemami”, Matematicheskie metody v tekhnike i tekhnologiyakh MMTT, 2016, no. 8 (90), 107–111

[5] W. Duch, R.J. Oentaryo, M. Pasquier, Cognitive Architectures: Where do we go from here?, Proc. 2008 conference on Artificial General Intelligence 2008, Proceedings of the First AGI Conference, 2008, 122–136

[6] B. Goertzel, “Artificial General Intelligence: Concept, State of the Art, and Future Prospects”, Journal of Artificial General Intelligence, 5:1 (2014), 1–46 | DOI

[7] B. Goertzel, R. Lian, I. Arel et al., “A World Survey of Artificial Brain Projects, Part II: Biologically Inspired Cognitive Architectures”, Neurocomputing, 74:1-3 (2010), 30–49 | DOI

[8] Z.V. Nagoev, K.Ch. Bzhikhatlov, I.A. Pshenokova i dr., “Avtonomnyi sintez prostranstvennykh ontologii v sisteme prinyatiya reshenii mobilnogo robota na osnove samoorganizatsii multiagentnoi neirokognitivnoi arkhitektury”, Izvestiya Kabardino-Balkarskogo nauchnogotsentra RAN, 2020, no. 6 (98), 68–79

[9] Z. Nagoev, O. Nagoeva, M. Anchokov et al., “The Symbol Grounding Problem in the System of General Artificial Intelligence Based on Multi-Agent Neurocognitive Architecture”, Cognitive Systems Research, 79 (2023), 71–84 | DOI

[10] Z. Nagoev, I. Pshenokova, O. Nagoeva, Z. Sundukov, “Learning Algorithm for an Intelligent Decision Making System Based on Multi-Agent Neurocognitive Architectures”, Cognitive Systems Research, 66 (2021), 82–88 | DOI

[11] Nagoev Z.V., “Ontoneiromorfogeneticheskoe modelirovanie”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2013, no. 4 (54), 46–56

[12] Z.V. Nagoev, “Multiagentnye ekzistentsialnye otobrazheniya i funktsii”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2013, no. 4 (54), 63–71

[13] Z.V. Nagoev, O.V. Nagoeva, Obosnovanie simvolov i multiagentnye neirokognitivnye modeli semantiki estestvennogo yazyka, Izd-vo KBNTs RAN, Nalchik, 2022, 150 pp.

[14] R.R. Galin, A.A. Shirokii, E.A. Magid i dr., “Effektivnoe funktsionirovanie smeshannoi neodnorodnoi komandy v kollaborativnoi robototekhnicheskoi sisteme”, Informatika i avtomatizatsiya, 2021, no. 6 (20), 1224–1253

[15] R. V. Mescheryakov, “Intellektualnye robototekhnicheskie sistemy”, Datchiki i sistemy, 2024, no. 2 (274), 12–17

[16] R.V. Mescheryakov, A.S. Shirokov, “Postanovka zadachi geterogennogo gruppovogo vzaimodeistviya robotov pri reshenii zadach umnogo sada”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematika. Mekhanika. Fizika», 16:2 (2024), 41–49

[17] A.A. Zakharova, V.P. Kutakhov, R.V. Mescheryakov i dr., “Modelirovanie zadach transportirovki gruzov v bespilotnoi aviatsionnoi transportnoi sisteme”, Aviakosmicheskoe priborostroenie, 2023, no. 3, 3–15

[18] R. Galin, R. Meshcheryakov, M. Mamchenko, “Simple Task Allocation Algorithm in a Collaborative Robotic System. Frontiers in Robotics and Electromechanics”, Smart Innovation, Systems and Technologies, 329 (2023), 433–447 | DOI

[19] D. Wolf, Y. Turovsky, A. Iskhakova, R. Meshcheryakov, “Evaluation of EEG Data for Zonal Affiliation of Brain Waves by Leads in a Robot Control Task”, Interactive Collaborative Robotics. ICR 2023, Lecture Notes in Computer Science, 14214, eds. Ronzhin, A., Sadigov, A., Meshcheryakov, R., 2023, 103–115 | DOI